Skip to main content
ChemistryOpen logoLink to ChemistryOpen
. 2024 Sep 27;13(12):e202400197. doi: 10.1002/open.202400197

New Tricyclic Aryl Quinazoline Derivatives by Suzuki‐Miyaura Cross‐Coupling

Burkhon Elmuradov 1,2,, Rasul Okmanov 2, Bakhromjon Juraev 2, Gerald Dräger 1, Holger Butenschön 1,
PMCID: PMC11625927  PMID: 39329258

Abstract

A number of new deoxyvasicinone (2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one) and mackinazolinone (6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one) derivatives with aryl substituents at C7/C8 and at C5 are reported. These compounds are rare representatives of their kind and were prepared in high yields by Suzuki‐Miyaura cross‐coupling reactions between 7‐bromo‐2,3‐dihydro[2,1‐b]quinazoline‐9‐(1H)one, 5,7‐dibromo‐2,3‐dihydro[2,1‐b]quinazoline‐9‐(1H)one or 8‐bromomackinazolinone and respective arylboronic acids with palladium acetate as the catalyst. The products were characterized spectroscopically and, in addition, by X‐ray crystal structure analyses in six cases.

Keywords: Cross-Coupling, Palladium Catalysis, Suzuki-Miyaura Reaction, Quinazoline


New quinazoline derivatives are prepared in high yields by single or double Suzuki‐Miyaura cross‐coupling of the rare respective brominated precursors. Six of the products are crystallographically characterized, and results of some DFT calculations of the new products are reported.

graphic file with name OPEN-13-e202400197-g020.jpg

Introduction

Deoxyvasicinone (2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one, 1) [1] and mackinazolinone (6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one, 2) [2] are tricyclic quinazoline alkaloids with significant anti‐inflammatory, anti‐microbial, anti‐depressant and anti‐oxidant activities,[ 3 , 4 , 5 , 6 , 7 ] which also deserve interest as ligands in the context of the treatment of Alzheimer's disease. [8] Therefore a number of derivatives have been prepared with a variety of substitution patterns.[ 9 , 10 ] Interestingly, there are less than 80 derivatives of 1 known, which bear an aryl substituent at C‐7 (Scheme 1). [11]

Scheme 1.

Scheme 1

Deoxyvasicinone (1), mackinazolinone (2), and bromo derivatives 35.

Remarkably, reports of the bromo derivatives 3,[ 1 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 ] 4,[ 17 , 23 ] and 5[ 21 , 24 ] are comparatively rare. However, they offer the attractive possibility to obtain a variety of new derivatives by using palladium‐catalyzed coupling reactions such as the Suzuki‐Miyaura cross‐coupling.[ 25 , 26 , 27 , 28 ] In the context of our ongoing research[ 10 , 16 , 29 , 30 , 31 , 32 , 33 ] we investigated this possibility and report here the syntheses and characterization of a number of new tricyclic quinazoline derivatives starting from 35. 35 were obtained by condensation of 5‐bromoanthranilic acid or 3,5‐dibromoanthranilic acid with respective lactams according to the published procedures (see Experimental Section).[ 17 , 19 , 34 ]

Results and Discussion

Biaryl derivatives have a remarkable importance in a variety of fields such as natural products synthesis, medicinal chemistry or materials science.[ 35 , 36 , 37 , 38 ] While stoichiometric reactions targeting at axially chiral derivatives[ 39 , 40 ] and dehydrogenative couplings such as the Scholl reaction [41] are still important, over the last decades catalytic reactions allowing for the coupling of two aryl building blocks have been developed,[ 42 , 43 , 44 , 45 ] the most common ones being Suzuki‐Miyaura,[ 46 , 47 , 48 ] Negishi, and Stille coupling reactions. [27] Among these the Suzuki‐Miyaura coupling often gives highest yields and, in addition, has the advantage of using the least toxic, often commercially available and most easily to handle reagents.

New deoxyvasicinone derivatives 611 (Scheme 2) were prepared in high yields by palladium‐catalyzed Suzuki‐Miyaura coupling of 3 (Table 1) with the respective boronic acids. Use of Pd(OAc)2 gave 10–15 % higher yields than reactions performed with [Pd(PPh3)4] as the catalyst. Smaller catalyst amounts resulted in reduced product yields.

Scheme 2.

Scheme 2

Arylated deoxyvasicinone derivatives 611.

Table 1.

Suzuki‐Miyaura coupling reactions of 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)‐one (3).

Entry

Product

Conditions

Yield (%)

1

6

Pd(OAc)2 (4.2 mol %), PhB(OH)2 (2.2 equiv.), Na2CO3 (2.0 equiv.),

acetone/water (1 : 1), 40–45 °C, 3 h.

92

3

7

Pd(OAc)2 (4.2 mol %), 4‐NCC6H4B(OH)2 (1.1 equiv.), Na2CO3 (2.5 equiv.),

acetone/water (2 : 1), 40–45 °C, 3 h.

96

4

8

Pd(OAc)2 (4.2 mol %), 8‐quinolinyl B(OH)2, (1.2 equiv.), Na2CO3 (2.5 equiv.),

acetone/water (2 : 1), 40–45 °C, 5 h.

83

5

9

Pd(OAc)2 (4.2 mol %), (3,4,5‐trimethoxyphenyl) B(OH)2 (1.2 equiv.),

Na2CO3 (2.5 equiv.), acetone/water (2 : 1), 40–45 °C, 0.5 h.

97

6

10

Pd(OAc)2 (4.2 mol %), benzothiophene‐3‐B(OH)2 (2.2 equiv.), Na2CO3 (2.0 equiv.),

acetone/water (2 : 1), 40–45 °C, 3 h.

89

7

11

Pd(OAc)2 (4.2 mol %), dibenzothiophene‐4‐B(OH)2 (1.2 equiv.), Na2CO3 (2.5 equiv.),

acetone/water (2 : 1), 40–45 °C, 7 h.

91

graphic file with name OPEN-13-e202400197-g018.jpg

611 were characterized on the basis of their consistent spectroscopic data (1H NMR, 13C{1H} NMR, IR, MS). In addition, compounds 9 and 10 were subjected to X‐ray crystal structure analyses (Figures 1, 2).

Figure 1.

Figure 1

Structure of 9 in the crystal. [49] Ellipsoids at 50 % probability level. Hydrogen atoms omitted for clarity. For selected bond lengths, bond angles and torsional angles see Table 3.

Figure 2.

Figure 2

Structure of 10 in the crystal. [49] Ellipsoids at 50 % probability level. For selected bond lengths, bond angles and torsional angles see Table 3.

Most of the reactions give the π extended reaction products in very high yields. However, use of 2,4,6‐trifluorophenyl boronic acid under the usual conditions did not result in product formation, presumably because of the electron withdrawing effect of the fluoro substituents in ortho and para positions.

5,7‐Dibromo derivative 5 offers the possibility of a double cross‐coupling reaction. This was tested and gave disubstituted derivatives 1216 in 74–98 % yield (Table 2, Scheme 3). Remarkably, the reaction with 8‐quinolineboronic acid remained incomplete and gave mono‐substituted derivative 16 in 68 % yield clearly indicating that the Suzuki‐Miyaura coupling at C7 is significantly faster than that at C5 with the additional option of attaching different substituents at C5 and C7. This may be a result of the proximity of the nitrogen atom N4, which bears a lone electron pair possibly interacting with the catalyst metal. 5,7‐Diarylated 2,3‐dihydro[2,1‐b]quinazoline‐9‐(1H)‐one derivatives are very rare, a SciFinder® substructure search gave only five loosely related compounds mentioned in a Chinese patent in the context of electroluminescence applications. [50]

Table 2.

Suzuki‐Miyaura coupling of 5,7‐dibromo‐2,3‐dihydro[2,1‐b]quinazoline‐9‐(1H)one (5). Conditions: Pd(OAc)2 (8.4 mol %), ArB(OH)2 (2.4 equiv.), Na2CO3 (2.5 mmol), acetone/water (1 : 1), 40–45 °C, 5 h.

Entry

Product

Yield (%)

1

12

84

3

13

97

4

14

98

5

15

75

6

16

68

Scheme 3.

Scheme 3

Arylated deoxyvasicinone derivatives 1216.

Coupling products 1216 were characterized spectroscopically, and crystals suitable for X‐ray structure analyses were obtained from 13 and 14 (Figures 3 and 4).

Figure 3.

Figure 3

Structure of 13 in the crystal. [49] Ellipsoids at 50 % probability level. Hydrogen atoms omitted for clarity. For selected bond lengths, bond angles and torsional angles see Table 3.

Figure 4.

Figure 4

Structure of 14 in the crystal. [49] Ellipsoids at 50 % probability level. Hydrogen atoms omitted for clarity. For selected bond lengths, bond angles and torsional angles see Table 3.

Selected geometrical data of coupling products 9, 10, 13, and 14 are listed in Table 3. Within the systematic error the data in Table 3 indicate same geometries for the basic tricyclic quinazoline systems in 9, 10, 13, and 14. Slight deviations can be observed at the substituted positions. Differences are observed for the torsional angles indicating the degree of non‐coplanarity of up to 48.3° of the π systems of the basic system and that of the substituents, particularly reflecting the steric bulk of the substituents in 10 and 13.

Table 3.

Selected bond lengths, bond angles, and torsion angles of deoxyvasicinone derivatives 9, 10, 13, and 14 as determined by X‐ray crystal structure analyses. [49] For atom numbering schemes see Figures 1, 2, 3, 4.

Bond length [pm],

bond angle [°]

or torsion angle [°]

9

10

13

14

C1‐C2

152.9(4)

151.5(3)

153.9(3)

153.2(5)

C1‐N9a

146.7(3)

147.6(3)

147.3(3)

147.7(4)

C2‐C3

151.9(4)

150.8(4)

152.4(4)

154.1(5)

C3‐C3a

150.0(4)

150.4(3)

151.0(3)

150.1(5)

C3a‐N4

128.9(3)

128.4(3)

129.6(3)

129.4(3)

C3a‐N9a

137.7(3)

137.8(2)

137.3(3)

137.5(4)

N4‐C4a

139.8(3)

139.4(2)

140.6(3)

139.5(3)

C4a‐C5

139.5(4)

140.2(2)

141.9(3)

143.7(3)

C5‐C6

137.6(3)

136.9(3)

139.6(3)

139.1(3)

C6‐C7

140.3(3)

141.2(3)

141.3(3)

140.4(3)

C7‐C8

138.2(3)

138.1(2)

138.8(3)

138.9(3)

C7‐C11

149.0(3)

148.4(3)

150.2(3)

149.0(3)

C8‐C8a

140.0(3)

139.8(2)

140.7(3)

139.9(4)

C8a‐C9

146.1(4)

146.4(2)

146.8(3)

146.9(4)

C9‐N9a

137.7(3)

137.9(2)

138.6(3)

138.4(4)

C9‐O10

122.7(3)

122.6(2)

122.7(3)

122.5(3)

C1‐N9a‐C9

123.0(2)

123.9(1)

123.1(2)

123.5(2)

C3‐C3a‐N4

126.0(2)

126.9(2)

125.0(2)

126.1(3)

N4‐C4a‐C5

118.9(2)

119.1(1)

119.8(2)

119.5(2)

C6‐C7‐C11‐C12

−37.0(3)

47.8(3)

−11.2(3)

−20.5(4)

C6‐C7‐C11‐C12′

142.9(2)

168.8(2)

157.3(2)

C6‐C7‐C11‐C17a

−134.6(2)

C6‐C5‐C19‐C20

48.4(3)

C6‐C5‐C19‐C20′

−130.4(2)

C6‐C5‐C17‐C18

38.4(3)

C6‐C5‐C17‐C18′

−137.3(2)

Starting from bromomackinazolinone 4 with one methylene group more than 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)‐one (3) new arylated derivatives 1721 were prepared by Suzuki‐Miyaura coupling reactions in 90 % and 95 % yield, respectively (Scheme 4). Remarkably, according to a SciFinder® search, there are so far only eight arylated mackinazolinione derivatives known including a patent in the context of electroluminescent properties. [51]

Scheme 4.

Scheme 4

Mackinazolinone derivatives 1721.

In addition to their spectroscopic characterization, 18 and 19 were subjected to crystal structure analyses (Figures 5 and 6). Selected geometrical data of 18, and 19 are listed in Table 4.

Figure 5.

Figure 5

Structure of 18 in the crystal. [49] Ellipsoids at 50 % probability level. Hydrogen atoms omitted for clarity. For selected bond lengths, bond angles and torsional angles see Table 4.

Figure 6.

Figure 6

Structure of 19 in the crystal. [49] Ellipsoids at 50 % probability level. Hydrogen atoms omitted for clarity. For selected bond lengths, bond angles and torsional angles see Table 4.

Table 4.

Selected bond lengths, bond angles, and torsion angles of mackinazolinone derivatives 18 and 19. For atom numbering schemes see Figures 56.

Bond length [pm],

bond angle [°] or

torsion angle [°]

18

19

C1‐C2

150.8(7)

151.9(3)

C1‐N10a

148.3(2)

148.0(2)

C2‐C3

151.1(7)

147.3(4)

C3‐C4

150.1(5)

149.9(3)

C4‐C4a

151.1(3)

150.4(3)

C4a‐N5

130.0(2)

129.3(2)

C4a‐N10a

137.5(2)

137.4(2)

N5‐C5a

138.7(2)

138.2(2)

C5a‐C6

140.1(2)

139.7(3)

C5a‐C9a

140.1(2)

138.7(2)

C6‐C7

137.7(2)

136.5(3)

C7‐C8

140.7(2)

140.5(3)

C8‐C9

138.8(2)

138.4(2)

C8‐C12

148.4(2)

148.7(2)

C9‐C9a

140.0(2)

139.6(2)

C9a‐C10

145.5(2)

145.6(2)

C10‐N10a

140.5(2)

140.1(2)

C10‐O11

121.8(2)

122.0(2)

C1‐N10a‐C10

114.8(1)

114.5(2)

C4‐C4a‐N5

116.9(1)

117.2(2)

C7‐C8‐C12‐C13

40.5(2)

13.7(3)

C7‐C8‐C12‐C13′

−138.9(1)

−167.4(2)

In 18 the methylene groups of the molecule are disordered over two positions (C2, C3). Refinement of the structure yielded 0.628 (12) : 0.372 (12) occupancy ratio of the disordered atoms (i. e. two conformers). The disorder of the methylene groups was previously observed in the quinazoline derivative crystals of 2‐bromo‐6,8,9,11‐tetrahydro‐7H‐pyrido[2,1‐b]quinazolin‐11‐ol and 6,8,9,11‐tetrahydro‐7H‐pyrido[2,1‐b]quinazolin‐11‐ol. [52] The piperidine ring with two sp 2 ‐hybridized atoms of C4a and N10a adopts half‐chair conformation.

Some DFT calculations of 1 and 611 have been performed. [53] Calculated HOMO and LUMO energies are listed in Table 5, which also contains the energies of the HOMO‐LUMO gaps and the torsional angles between the aryl substituents and the quinazoline system based on the structure analyses and on the calculations. As a representative examples, the HOMOs of 7 and 14 are shown in Figures 7 and 8.

Table 5.

Calculated HOMO and LUMO energies in eV and torsional angles. [53] Groups AC refer to 7‐monosubstituted (A), 5,7‐disubstituted deoxyvasicinone (B), and 8‐monosubstituted mackinazolinone (C) derivatives.

Group

Compound

Formula

HOMO [eV]

LUMO [eV]

Δ [eV]

Torsion[a]

A

1

graphic file with name OPEN-13-e202400197-g027.jpg

−8.33

0.48

8.81

6

graphic file with name OPEN-13-e202400197-g032.jpg

−7.98

0.38

8.36

C7 : 40.8°

7

graphic file with name OPEN-13-e202400197-g009.jpg

−8.34

−0.34

8.00

C7 : 39.9°

8

graphic file with name OPEN-13-e202400197-g003.jpg

−7.84

−0.10

7.74

C7 : 51.0°

9

graphic file with name OPEN-13-e202400197-g012.jpg

−7.86

0.40

8.26

C7 : 37.0°/39.6°

10

graphic file with name OPEN-13-e202400197-g017.jpg

−7.77

0.39

8.16

C7 : 47.8°/51.3°

11

graphic file with name OPEN-13-e202400197-g002.jpg

−7.81

0.28

8.09

C7 : 57.1°

B

12

graphic file with name OPEN-13-e202400197-g026.jpg

−7.87

0.28

8.15

C5 : 50.4°

C7 : 40.3°

13

graphic file with name OPEN-13-e202400197-g004.jpg

−7.67

0.29

7.96

C5 : 48.4°/50.1°

C7 : 11.2°/40.0°

14

graphic file with name OPEN-13-e202400197-g010.jpg

−8.19

−0.28

7.91

C5 : 38.4°/47.6°

C7 : 20.5°/39.2°

15 b

graphic file with name OPEN-13-e202400197-g016.jpg

−7.43

0.56

7.99

C5 : 67.5°

C7 : 51.5°

16

graphic file with name OPEN-13-e202400197-g011.jpg

−7.94

−0.22

7.72

C7 : 49.3°

C

17

graphic file with name OPEN-13-e202400197-g001.jpg

−7.94

0.39

8.33

C8 : 41.1°

18

graphic file with name OPEN-13-e202400197-g025.jpg

−8.29

−0.32

7.97

C8 : 40.5°/40.3°

19

graphic file with name OPEN-13-e202400197-g033.jpg

−7.73

0.42

8.15

C8 : 13.7°/40.8°

20

graphic file with name OPEN-13-e202400197-g028.jpg

−7.71

0.38

8.09

C8 : 48.2°

21

graphic file with name OPEN-13-e202400197-g008.jpg

−7.78

0.28

8.06

C8 : 55.9°

[a] The numbers give the torsional angle between the connected π systems at the indicated carbon atom. Torsional angle signs omitted for clarity. Italics: by X‐ray structure analysis; non‐italics: by DFT calculation (ωB97X−D, 6–311+G**). [b] Calculation with 6–311+G** failed, data calculated with 6–31G*.

Figure 7.

Figure 7

HOMO of 7 as calculated by DFT. [53]

Figure 8.

Figure 8

HOMO of 14 as calculated by DFT. [53]

The data show that the calculated torsions of the substituents at C7 in 9 and 10 are reasonably in agreement with those of the structure analyses. For 13 and 14 this is the case only for the substituents at C5, while the calculated torsions at C7 significantly deviate from those measured. While there is an excellent agreement between the measured and the calculated torsion for 18, this is not the case for the methoxy substituted derivative 19. A possible reason for the observed deviations may be the fact that the calculations were done for the gas phase, while the measurements show the compounds in the crystalline state more prone to intermolecular interactions.

As representative examples Figures 7, 8, 9 show the HOMOs of 7, 14, and 18. These derivatives are those with the lowest HOMO in the respective group as a result of the electron withdrawing cyano substituents. All three HOMOs show a nodal plane between the substituent and the quinazoline π systems. For 18 HOMO‐6 is the highest π orbital with a significant overlap between the aryl substituent and the quinazoline π system as shown in Figure 10.

Figure 9.

Figure 9

HOMO of 18 as calculated by DFT. [53]

Figure 10.

Figure 10

HOMO‐6 of 18 as calculated by DFT. [53]

Within group A (7‐monosubstituted deoxyvasicinones) 4‐cyanophenyl derivative 7 with an electron withdrawing substituent has the lowest HOMO and also the lowest LUMO. Compound 10 with an electron rich benzo[b]thiophen‐3‐yl substituent has the highest HOMO and a similar LUMO as the electron rich 9. The reliability of the calculations for 9 and 10 is high as indicated by the close matches for the torsional angles between the calculated and the measured values (vide supra). Within group B (5,7‐disubstituted deoxyvasicinones) the di(4‐cyanophenyl) substituted derivative 14 has the lowest HOMO and also the lowest LUMO with a HOMO‐LUMO gap of only 7.91 eV. The highly electron rich derivative 13 has the highest HOMO and also the highest LUMO in this group. Among the 2‐substituted mackinazolinone derivatives (group C) 4‐cyanophenyl derivative 18 has the lowest HOMO and also the lowest LUMO with excellent match of the calculated and measured torsional angle (vide supra). Electron rich derivatives 19 and 20 show the highest HOMOs. Over all, the (4‐phenyl) substituted derivatives 7, 14, and 18 consistently show the lowest HOMOs in their respective groups.

Conclusions

In conclusion, we report the syntheses of a number of new deoxyvasicinone and mackinazolinone derivatives. The deoxyvasicinone derivatives bear aryl substituents at C7 and at C5, while mackinazolinone derivatives are substituted at C2. The systems with substituents at C5 or C2 are rare, so that the number of compounds of these types has significantly been increased. The compounds have been prepared in high yields by Suzuki‐Miyaura cross‐coupling reactions with palladium acetate as the catalyst and the respective boronic acids. Six of the compounds have been characterized by X‐ray crystal structure analyses showing very similar geometries for the tricyclic base systems of the derivatives. DFT calculations have been performed showing very good matches with the structural measurements of the torsional angles between the connected π systems for some cases. For all three groups of compounds the 4‐cyanophenyl substituted derivatives show the lowest HOMO energies.

Experimental Section

General. Starting materials were either commercially acquired or were prepared according to published procedures.[ 17 , 19 , 34 ] 1H and 13C{1H} NMR spectra were obtained with Bruker AVS 400 (1H: 400 MHz, 13C: 100.6 MHz) and AVS 500 (1H: 500 MHz, 13C: 125.7 MHz) and with Varian Unity400 plus and Jeol JNM‐ECZ 600 R instruments. Chemical shifts δ refer to δ TMS=0 ppm (1H NMR) or to residual solvent signals (13C{1H} NMR). Primary, secondary, tertiary and quaternary carbon atom signals were identified as such by the APT or DEPT spectra. IR spectra were obtained with Perkin‐Elmer instruments FT‐IR 580 and 1170 using the ATR technique. Signal characteristics are abbreviated as s (strong), m (medium), w (weak), and br (broad). Mass spectra were obtained with a Micromass LCT instrument with lockspray source and direct injection and with a Q−TOF premier LC–MS/MS instrument with an Ionsabre‐APCI‐source (25 μA, 350 °C). In all cases acetonitrile was used as the solvent. Crystal structure analyses were obtained with CCD Xcalibur diffractometer (Oxford Diffraction) or Bruker SMART X2S instruments and were deposited with the CCDC. Analytical TLC was performed with Merck 60F‐254 silica gel thin layer plates. Column chromatography was performed with J. T. Baker silica gel (60 μm) as the stationary phase using the flash chromatography method. [54] Melting points were measured with an instrument Electrothermal IA9000. All operations were performed in an argon atmosphere.

General Procedure (GP): 7‐Bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3), 5,7‐dibromo‐2,3‐dihydro[2,1‐b]quinazoline‐9‐(1H)one (5) or 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4), arylboronic acid, sodium carbonate and palladium (II) acetate in acetone/water are stirred at 40–45 °C. After cooling the reaction mixture to 20–25 °C aqueous sodium hydroxide (1 M) is added, and the mixture is extracted with chloroform (2×15 mL) and then washed with water (2×5 mL). The organic layer is separated and dried over anhydrous sodium sulfate. After solvent removal at reduced pressure the product is purified by column chromatography or crystallized from benzene.

7Bromo2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)one (7bromodeoxyvasicinone, 3):[ 1 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 ] At 0–2 °C phosphorus oxychloride (13 mL, 21.8 g, 142.0 mmol) is added dropwise with stirring over 1 h to anthranilic acid (4.32 g, 20.0 mmol) and γ‐butyrolactam (2.72 g, 32 mmol). After heating the reaction mixture at reflux for 2 h it is cooled to 25 °C, and ice (200 g) is added. Then aqueous ammonia (25 %) is added up to pH 10–11. The yellow precipitate is filtered off and dried. After recrystallization from methanol 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (3, 4.35 g, 16.4 mmol, 82 %) is obtained as yellow crystals (m. p. 159–160 °C).

1H NMR (400 MHz, CDCl3): δ=8.40 (1H, d, J=2.4 Hz, NCCHCHCCH), 7.80 (1 H, dd, J=2.4, 8.8 Hz, NCCHCH), 7.52 (1H, d, J=8.8 Hz, NCCH), 4.22 (2H, t, J=8.0 Hz, NCH2), 3.18 (2H, t, J=7.6 Hz, NCH2CH2CH 2), 2.31 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=159.9 (CO), 159.8 (OCCCH), 148.0 (OCC), 137.3 (NCCH), 129.0 (NCCH2), 128.7 (OCCCHCCH), 122.0 (NCCH), 119.7 (CBr), 46.7 (NCH2), 32.6 (NCH2CH2 CH2), 19.5 (NCH2 CH2) ppm.

2Bromo‐6,7,8,9tetrahydro11H pyrido[2,1 b ]quinazolin11one (2bromomackinazolinone, 4):[ 17 , 23 ] At 0–2 °C phosphorus oxychloride (26 mL, 43.55 g, 280.0 mmol) is added dropwise with stirring over 1 h to 5‐bromoanthranilic acid (8.0 g, 40.0 mmol) and δ‐valerolactam (6.34 g, 64.0 mmol). After heating the reaction mixture at reflux for 2 h it is cooled to 25 °C, and ice (200 g) is added. Then aqueous ammonia (25 %) is added up to pH 10–11. The yellow precipitate is filtered off and dried. After recrystallization from methanol 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4, 8.6 g, 33.2 mmol, 83 %) is obtained as yellow crystals (m. p. 163–164 °C).

1H NMR (600 MHz, CDCl3): δ=8.35 (1 H, d, J=2.3 Hz, OCCCH), 7.75 (1 H, dd, J=2.4, 8.7 Hz, NCCHCH), 7.45 (1 H, d, J=8.7 Hz, NCCH), 4.04 (2 H, t, J=6.2 Hz, NCH2), 2.98 (2 H, t, J=6.7 Hz, NCCH2), 2.02–1.98, 1.95–1.91 (2×2 H, 2 m, NCH2CH 2, NCH2CH2CH 2) ppm. 13C{1H} NMR (150 MHz, CDCl3): δ=161.1 (CO), 155.6 (OCCCH), 146.2 (OCC), 137.5 (NCCH), 129.3 (NCN), 128.4 (OCCCHCCH), 121.8 (NCCH), 119.6 (CBr), 42.7 (NCH2CH2 CH2), 32.0 (NCH2 CH2), 22.1 (NCH2CH2CH2 CH2), 19.3 (NCH2) ppm.

5,7Dibromo2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)one (5,7dibromodeoxyvasicinone, 5):[ 21 , 24 ] At 0–2 °C phosphorus oxychloride (23.8 mL, 39.86 g, 260.0 mmol) is added dropwise with stirring over 1 h to 3,5‐dibromoanthranilic acid (10.0 g, 34.0 mmol) and γ‐butyrolactam (4.44 g, 52.0 mmol). After heating the reaction mixture at reflux for 2 h it is cooled to 25 °C, and ice (200 g) is added. Then aqueous ammonia (25 %) is added up to pH 10–11. The yellow precipitate is filtered off and dried. After recrystallization from methanol 5,7‐dibromo‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (5, 9.8 g, 28.6 mmol, 84 %) is obtained as yellow crystals (m. p. 243–244 °C).

1H NMR (600 MHz, CDCl3): δ=8.35 (1 H, m, NCCCHCCH), 8.09 (1 H, m, NCCCH), 4.19 (2 H, t, J=7.1 Hz, NCH2), 3.24 (2 H, t, J=8.0 Hz, NCH2CH2CH 2), 2.30 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (150 MHz, CDCl3): δ=161.2 (CO), 159.3 (OCCCH), 146.0 (OCC), 140.4 (NCCH), 128.8 (NCCH2), 123.0 (NCCBr), 122.8 (NCCH), 119.5 (OCCCHCBr), 47.0 (NCH2), 33.0 (NCH2CH2 CH2), 19.6 (NCH2 CH2) ppm.

7Phenyl2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)one (6): GP; 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3, 132.5 mg, 0.5 mmol), phenylboronic acid (137 mg, 1.1 mmol), sodium carbonate (106.0 mg, 1.0 mmol) and palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone / water (1 : 1, 6 mL), aqueous sodium hydroxide (1 M, 2 mL), 7‐phenyl‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (6, 120 mg, 0.46 mmol, 92 %), colorless solid (m. p. 170–171 °C).

R f=0.21 (ethyl acetate). 1H NMR (400 MHz, CDCl3): δ=8.51 (1 H, d, J=2.0 Hz, NCCHCHCCH), 7.98 (1 H, dd, J=2.4, 8.0 Hz, NCCHCH), 7.70 (3 H, t, J=8.0 Hz, m‐CHPh, NCCH), 7.47 (2 H, d, J=8.0 Hz, o‐CHPh), 7.38 (1 H, t, J=8.0 Hz, p‐CHPh), 4.23 (2 H, t, J=8.0 Hz, NCH2), 3.20 (2 H, t, J=8.0 Hz, NCH2CH2CH 2), 2.30 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.1 (CO), 159.6 (OCCCH), 148.3 (OCC), 139.8 (OCCCHC), 139.3 (NCCH), 133.2 (NCCH2), 129.1 (OCCCHCCH), 127.9 (OCCCHCC), 127.4 (NCCH), 127.3 (o‐CH), 124.4 (m‐CH), 120.9 (p‐CH), 46.7 (NCH2), 32.7 (NCH2CH2 CH2), 19.7 (NCH2 CH2) ppm. IR (ATR): ν=1661 (C=O), 1609 (C=N), 1474 (C−N) cm−1. EI−MS: m/z (%)=262 ([M]+, 100), 261 ([M−H]+, 37), 219 ([M−H−(CH2)3]+, 6.2). HRMS: Calcd. for C17H15N2O ([M+H]+) 263.1184; found 263.1184. Calcd. for C17H14N2O 262.1106; found: 262.1109.

4(9Oxo1,2,3,9tetrahydropyrrolo[2,1 b ]quinazolin7yl)benzonitrile (7): GP; 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3, 132.5 mg, 0.5 mmol), 4‐cyanophenylboronic acid (80.8 mg, 0.55 mmol), sodium carbonate (132.5 mg, 1.25 mmol), palladium (II) acetate (9.43 mg, 0.042 mmol), acetone/water (2 : 1, 6 mL), aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate), 4‐(9‐oxo‐1,2,3,9‐tetrahydropyrrolo[2,1‐b]quinazolin‐7‐yl)benzonitrile (7, 138 mg, 0.48 mmol, 96 %), colorless crystals, m. p. 240–241 °C.

R f=0.16 (ethyl acetate). 1H NMR (400 MHz, CDCl3): δ=8.50 (1 H, d, J=2.3 Hz, OCCCH), 7.96 (1 H, dd, J=2.3, 8.5 Hz, NCCHCH), 7.73–7.80 (5 H, m, NCCH, 4 CPhH), 4.24 (2H, t, J=7.2 Hz, NCH2), 3.21 (2 H, t, J=8.0 Hz, NCH2CH2CH 2), 2.32 (2H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=160.9 (C≡N), 160.4 (CO), 149.4 (OCCCH), 144.2 (OCC), 137.0 (OCCCHC), 132.9 (OCCCHCCCHCH, OCCCHCCCHCHC), 128.0 (OCCCHCCCH), 127.9 (OCCCHCCCH), 125.0 (NCN), 121.1 (NCCHCH), 118.9 (NCCH), 111.5 (NCCH), 46.8 (NCH2), 32.8 (NCH2CH2 CH2), 19.7 (NCH2 CH2). IR (ATR): ν=2970 (CH2), 2221 (CN), 1670 (C=O), 1600 (C=N), 1508 (C=C), 1462 (C−N) cm−1. MS (TOF, ES+): m/z (%)=288 ([M+H]+, 100), 261 ([M−CN]+, 2), 183 ([M−HCN−C6H5]+, 1.8), 142 ([M−C6H5−CN−(CH2)3]+, 3.1). HRMS: Calcd. for C18H14N3O ([M+H]+) 288.1137; found 288.1371.

7(Quinolin8yl)2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)one (8): GP; 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3, 132.5 mg, 0.5 mmol), 8‐quinolinylboronic acid (103.8 mg, 0.6 mmol), sodium carbonate (132.5 mg, 1.25 mmol), palladium (II) acetate (9.43 mg, 0.042 mmol), acetone/water (2 : 1, 6 mL), stirring at 40–45 °C for 5 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/methanol 25 : 1), 7‐(quinolin‐8‐yl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (8, 130 mg, 0.42 mmol, 83 %), light purple crystals, m. p. 215–216 °C.

R f=0.21 (ethyl acetate/methanol 15 : 1). 1H NMR (400 MHz, CDCl3): δ=8.97 (1 H, dd, J=1.8, 4.2 Hz, NCCCHCHCHCCH), 8.58 (1 H, dd, J=0.5, 2.1 Hz, OCCCH), 8.22 (1 H, dd, J=1.8, 8.3 Hz, NCHCH), 8.17 (1 H, dd, J=2.1, 8.4 Hz, NCCHCH), 7.87 (1 H, dd, J=1.5, 8.2 Hz, NCCCHCHCH), 7.83 (1 H, dd, J=1.5, 7.2 Hz, NCHCHCHC), 7.76 (1 H, d, J=8.4 Hz, NCCH), 7.63 (1 H, dd, J=7.2, 8.1 Hz, NCCCHCH), 7.44 (1 H, dd, J=4.2, 8.3 Hz, NCH), 4.24 (2 H, t, J=7.2 Hz, NCH2), 3.22 (2H, t, J=7.9 Hz, NCH2CH2CH 2), 2.30–2.37 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.3 (CO), 159.5 (OCCCHC), 150.5 (OCC), 148.6 (OCCCH), 146.0 (NCCH), 139.6 (NCCH), 138.0 (NCN), 137.3 (NCCHCH), 136.5 (OCCCHCC), 130.7 (OCCCHCCC), 128.9 (OCCCHCCCC), 128.2 (OCCCHCCNCH), 128.0 (OCCCHCCNCHCHCH), 126.5 (OCCCHCCNCHCH), 126.4 (OCCCHCCCH), 121.3 (OCCCHCCCHCHCH), 120.5 (OCCCHCCCHCHCH), 46.7 (NCH2), 32.7 (NCH2CH2 CH2), 19.7 (NCH2 CH2CH2) ppm. IR (ATR): ν=1678 (C=O), 1610 (C=N), 1546 (C=C), 1483 (C−N) cm−1. EI−MS: m/z (%)=313 ([M]+, 22), 312 ([M−H]+, 100). HRMS: Calcd. for C20H14N3O 312.1137; found: 312.1137. ESI HRMS (LCT): Calcd. for C20H15N3ONa ([M+Na]+) 336.1113; found: 336.1107.

7(3,4,5Trimethoxyphenyl)2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)one (9): GP; 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3, 132.5 mg, 0.5 mmol), 3,4,5‐trimethoxyphenylboronic acid (127.2 mg, 0.6 mmol), sodium carbonate (132.5 mg, 1.25 mmol), palladium (II) acetate (9.43 mg, 0.042 mmol), acetone/water (2 : 1, 6 mL), stirring at 40–45 °C for 5 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate / petroleum ether 7 : 1), 7‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (9, 171.3 mg, 0.47 mmol, 97 %), yellow crystals, m. p. 169–170 °C.

R f=0.13 (ethyl acetate/petroleum ether 7 : 1). 1H NMR (400 MHz, CDCl3): δ=8.47 (1 H, d, J=1.9 Hz, OCCCH), 7.96 (1 H, dd, J=2.2, 8.5 Hz, NCCHCH), 7.72 (1 H, d, J=8.5 Hz, NCCH), 6.88 (2 H, s, o‐CH), 4.25 (2 H, t, J=7.2 Hz, NCH2), 3.97 (6H, s, m‐COCH3), 3.92 (3H, s, p‐COCH3), 3.22 (2H, t, J=7.8 Hz, NCH2CH2CH 2), 2.29–2.37 (2H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.1 (CO), 159.4 (OCCCHC), 153.6 (OCC), 148.3 (NCCHCH), 139.2 (NCCH), 135.6 (NCCH), 133.1 (NCN), 127.3 (o‐CH), 124.1 (mCOCH3), 120.7 (pCOCH3), 104.4 (OCCCHCC), 60.9 (p‐COCH3), 58.3 (m‐COCH3), 46.6 (NCH2), 32.5 (NCH2CH2 CH2), 19.5 (NCH2 CH2CH2) ppm. IR (ATR): ν=1672 (C=O), 1620 (C=N), 1481 (C−N) cm−1. EI‐MS: m/z (%)=352 ([M]+, 96), 337 ([M−CH3]+, 100), 309 (8.4), 279 (5.3), 223 (9.5), 176 (4.2), 139 (3.1), 111 (6.3). HRMS: Calcd. for C20H20N2O4 352.1423; found 352.1422.

Crystal structure analysis: [49] CCDC 2344447. Single crystals suitable for X‐ray crystallographic analysis were obtained by crystallization from ethyl acetate at −15 °C. C20H20N2O4, yellow prism, M r=352.38 g . mol−1, crystal system monoclinic, space group P 1 21/c 1, a=13.9978(18), b=7.4552(9), c=17.018(2) Å, α=90°, β=103.547(4)°, γ=90°. V=1726.5(4) Å3, Z=4, d calc=1.356 g cm−3, μ=0.094 mm−1, crystal size 0.62×0.26×0.20 mm3, F(000)=744, Bruker SMART X2S diffractometer, graphite crystal monochromator, T=200 K, Mo−K α radiation (λ=0.71073 Å), 2.46≤θ≤27.59°, index ranges −18≤h≤18, −9≤k≤9, −20≤l≤22, reflections collected/unique 3980/2568, numerical absorption correction, structure solution and refinement with SHELXL‐2018/3, [55] parameters/restrains 238/0, R 1=0.0647 [l>2 s(l)], wR 2=0.1638 (all data), S=1.022, final maximum/minimum difference electron density 0.268/–0.248 eÅ−3.

7(Benzo[b]thiophen3yl)2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)one (10): GP; 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3, 132.5 mg, 0.5 mmol), benzothiophene‐3‐boronic acid (106.8 mg, 0.6 mmol), sodium carbonate (132.5 mg, 1.25 mmol), palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone/water (2 : 1, 6 mL), stirring at 40–45 °C for 3 h, then for 8 h a 25 °C, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate / petroleum ether 8 : 1), 7‐(benzo [b] thiophen‐3‐yl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (10, 142 mg, 0.45 mmol, 89 %), colorless crystals, m. p. 340 °C.

R f=0.18 (ethyl acetate/petroleum ether 8 : 1). 1H NMR (400 MHz, CDCl3): δ=8.53 (1 H, d, J=2.0 Hz, OCCCH), 7.95–8.00 (3 H, m, NCCHCH, H‐6, SCCH, SCCHCHCH), 7.78 (1 H, d, J=8.4 Hz, NCCH), 7.54 (1 H, s, SCH), 7.42–7.46 (2H, m, SCCHCH, SCCHCHCHCH), 4.27 (2 H, t, J=8.1 Hz, NCH2), 3.24 (2 H, t, J=7.8 Hz, NCH2CH2CH 2), 2.30–2.38 (2 H, m, NCH2CH 2) ppm.13C{1H} NMR (100.6 MHz, CDCl3): δ=161.0 (CO), 159.6 (NCCHCHC), 148.5 (NCCHCHCC), 140.7 (OCCCH), 137.6 (SCH), 136.7 (OCC), 134.6 (NCC), 134.1 (NCCH), 127.3 (NCCHCH), 125.9 (NCCH2), 124.6 (SCCH, SCCCH), 124.4 (SCCHCHCHCH), 123.0 (SCCH), 122.7 (SCCHCH), 120.8 (SCCHCHCH), 46.6 (NCH2), 32.6 (NCH2CH2 CH2), 19.6 (NCH2 CH2) ppm. IR (ATR): ν=1675 (C=O), 1618 (C=N), 1474 (C−N) cm−1. HRMS: Calcd. for C19H14N2NaO ([M+Na]+) 341.0725; found: 341.0725.

Crystal structure analysis: [49] CCDC 2344448. Single crystals suitable for X‐ray crystallographic analysis were obtained by crystallization from toluene at 5 °C. C19H14N2OS, colorless needle, M r=318.38 g . mol−1, crystal system orthorhombic, space group P b c a, a=17.041(3), b=7.0846(10), c=25.021(4) Å, α=90°, β=90°, γ=90°, V=3020.8(8) Å3, Z=8, d calc=1.400 g cm−3, μ=0.220 mm−1, crystal size 0.97×0.28×0.25 mm3, F(000)=1328, Bruker SMART X2S diffractometer, graphite crystal monochromator, T=300(2) K, Mo−K α radiation (λ=0.71073 Å), 2.39≤θ≤28.66°, index ranges −22≤h≤22, −9≤k≤9, −33≤l≤33, reflections collected/unique 3868/2944, multi‐scan absorption correction, structure solution and refinement with SHELXL‐2018/3, [55] parameters/restrains 208/0, R 1=0.0532 [l>2 s(l)], wR 2=0.1457 (all data), S=1.020, final maximum/minimum difference electron density 0.351/–0.485 eÅ−3.

7(Dibenzo[b,d] thiophen4yl)2,3dihydropyrrolo[2,1 b ]quinazolin9(1H )‐one (11): GP; 7‐bromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (3, 132.5 mg, 0.5 mmol), dibenzothiophene‐4‐boronic acid (137 mg, 0.60 mmol), sodium carbonate (132.5 mg, 1.25 mmol), palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone/water (2 : 1, 6 mL), stirring at 40–45 °C for 7 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 4 : 1), 7‐(dibenzo[b,d]thiophen‐4‐yl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (11, 168 mg, 0.46 mmol, 91 %), yellow crystals, m. p. 180–182 °C.

R f=0.2 (ethyl acetate/petroleum ether 4 : 1). 1H NMR (400 MHz, CDCl3): δ=8.67 (1 H, d, J=2.1 Hz, OCCCH), 8.20–8.23 (2 H, m, CaromH), 8.14 (1 H, dd, J=2.2, 8.4 Hz, NCCHCH), 7.84–7.87 (1 H, m, CaromH), 7.80 (1 H, d, J=8.4, NCCH), 7.57–7.59 (2H, m, CaromH), 7.46–7.49 (2H, m, CaromH), 4.25 (2H, t, J=7.2 Hz, NCH2), 3.23 (2H, t, J=7.8 Hz, NCH2CH2CH 2), 2.34 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.1 (CO), 160.0 (NCCHCHC), 148.9 NCCHCHCC), 139.6 (OCCCH), 138.8 (NCCHCHCCS), 138.7 (NCCHCHCCSC), 136.6 (NCCH), 135.8 (NCCH), 135.8 (NCCHCH), 134.3 (NCN), 127.5 (SCCH), 127.3 (SCCH), 127.1 (SCCCH), 126.2 (SCCCCH), 125.4 (NCCHCHCCCHCH), 124.6 (SCCHCH), 122.8 (SCCCH), 121.9 (SCCHCHCH), 121.0 (NCCHCHCC), 120.9 NCCHCHCCCH), 46.7 (NCH2), 32.8 (NCH2CH2 CH2), 19.7 (NCH2 CH2) ppm. IR (ATR): ν=2968 (CH2), 1661 (C=O), 1612 (C=N), 1496 (C=C), 1423 (C−N) cm−1. EI−MS: m/z (%)=368 ([M]+, 4), 264 (86), 150 (14), 131 (100). HRMS: Calcd. for C23H16N2OS 368.0983; found 368.0982.

5,7Diphenyl2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)‐one (12): GP; 5,7‐dibromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (5, 172 mg, 0.5 mmol), phenylboronic acid (146.3 mg, 1.2 mmol), sodium carbonate (265 mg, 2.5 mmol), palladium (II) acetate (18.86 mg, 0.084 mmol) in acetone/water (1 : 1, 12 mL), stirring at 40–45 °C for 4 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 1 : 1), 5,7‐diphenyl‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (12, 142 mg, 0.42 mmol, 84 %), colorless crystals, m. p. 207–208 °C.

R f=0.27 (ethyl acetate/petroleum ether 1 : 1). 1H NMR (400 MHz, CDCl3): δ=8.56 (1 H, d, J=2.4 Hz, OCCCHCCH), 8.02 (1 H, d, J=2.4 Hz, OCCCHCCH), 7.67–7.75 (4 H, dt, J=1.2, 8.8 Hz, 2×2 o‐CH), 7.50 (4 H, t, J=7.2 Hz, 2×2 m‐CH), 7.46–7.48 (2H, td, J=1.2, 7.6 Hz, 2 p‐CH), 4.24 (2 H, t, J=7.2 Hz, NCH2), 3.14 (2H, t, J=8.0 Hz, NCH2CH2CH 2), 2.23–2.31 (2H, m, NCH2 CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.5 (CO), 158.7 (OCCCH), 146.0 (OCC), 139.8 (OCCC), 139.5 (OCCCHC), 138.9 (OCCCHCCHC), 138.7 (NCN), 134.3 (OCCCHCCH), 130.7 (ipso‐C), 129.1 (ipso‐C), 128.1 (o‐CH), 127.9 (o‐CH), 127.6 (m‐CH), 127.3 (m‐CH), 123.8 (p‐CH), 121.7 (p‐CH), 46.6 (NCH2), 32.9 (NCH2CH2 CH2), 19.8 (NCH2 CH2) ppm. IR (ATR): ν=1670 (C=O), 1604 (C=N), 1494 (C=C), 1477 (C−N) cm−1. EI‐MS: m/z (%)=338 ([M]+, 37), 337 ([M−H]+, 100). HRMS: Calcd. for C23H17N2O 337.1341; found 337.1340. ESI HRMS (LCT): Calcd. for C23H19N2O ([M+H]+) 339.1497; found: 339.1497.

5,7Bis (3,4,5trimethoxyphenyl)2,3dihydropyrrolo[2,1 b ]quinazolin9(1H)‐one (13): GP; 5,7‐dibromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (5, 103 mg, 0.3 mmol), (3,4,5‐trimethoxyphenyl) boronic acid (148.3 mg, 0.70 mmol), sodium carbonate (79.5 mg, 0.75 mmol), palladium (II) acetate (7.2 mg, 0.03 mmol) in acetone/water (1 : 1, 10 mL), stirring at 40–45 °C for 8 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 6 : 1), 5,7‐bis (3,4,5‐trimethoxyphenyl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (13, 151 mg, 0.29 mmol, 97 %), colorless crystals, m. p. 257–258 °C.

R f=0.20 (ethyl acetate/petroleum ether 6 : 1). 1H NMR (400 MHz, CDCl3): δ=8.48 (1 H, d, J=2.3 Hz, OCCH), 7.95 (1 H, d, J=2.3 Hz, OCCCHCCH), 6.90 (4 H, 2 s, 4 o‐CH), 4.25 (2 H, t, J=7.1 Hz, NCH2), 3.95 (6 H, s, m‐OCH3), 3.93 (3 H, s, p‐OCH3), 3.91 (6 H, s, m‐OCH3), 3.91 (3 H, s, p‐OCH3), 3.17 (2 H, t, J=7.8 Hz, NCH2CH2CH 2), 2.29 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.4 (CO), 158.9 (OCC), 153.8 (ipso‐C), 153.0 (ipso‐C), 145.8 (NCCCH), 139.4 (OCCCHC), 139.0 (OCCCH), 138.3 (NCCCH), 137.8 (NCCCH), 135.7 (p‐C), 134.2 (o‐CH), 134.0 (o‐CH), 123.7 (2 C, m‐C), 121.6 (2 C, m‐C), 108.1 (p‐C), 104.7 (NCN), 61.1 (6 C, m‐OCH3), 61.0 (3 C, p‐OCH3), 56.5 (6 C, m‐OCH3), 56.4 (3 C, p‐OCH3), 46.7 (NCH2), 32.9 (NCH2CH2 CH2), 19.8 (NCH2 CH2CH2) ppm. IR (ATR): ν =2987, 2939 (CH2), 1670 (C=O), 1629 (C=N), 1508 (C=C), 1455 (C−N). EI‐MS: m/z (%)=518 ([M]+, 100), 519 ([M+H]+, 33), 332 ([M−6OMe]+, 51), 259 ([M−C6H(OMe)3]+, 20), 187 (23), 144 (quinazoline, 28). HRMS calcd. for C29H30N2O7 518.2053; found: 518.2066.

Crystal structure analysis: [49] CCDC 2344450. Single crystals suitable for X‐ray crystallographic analysis were obtained by crystallization from ethyl acetate at 5 °C. C29H30N2O7, colorless plate, Mr=518.55 g . mol−1, crystal system monoclinic, space group P 1 21/n 1, a=7.821(3), b=12.927 (5), c=25.543(9) Å, α=90°, β=94.384 (13)°, γ=90°. V=2574.9(15) Å3, Z=4, dcalc=1.338 g cm−3, μ=0.096 mm−1, crystal size 0.78×0.35×0.19 mm3, F(000)=1096.0, Bruker SMART X2S diffractometer, graphite crystal monochromator, T=300(2) K, Mo−K α radiation (λ=0.71073 Å), 2.67≤θ≤27.56°, index ranges −10≤h≤9, −16≤k≤16, −33≤l≤31, reflections collected/unique 5760/3644, multi‐scan absorption correction, structure solution and refinement with SHELXL‐2018/3, [55] parameters/restrains 349/0, R1=0.0629 [l>2 s(l)], wR2=0.1699 (all data), S=1.023, final maximum/minimum difference electron density 0.270/−0.262 eÅ−3.

4,4′(9oxo1,2,3,9tetrahydropyrrolo[2,1b]quinazoline5,7diyl)dibenzonitrile (14): GP; 5,7‐dibromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (5, 103 mg, 0.3 mmol), 4‐cyanophenylboronic acid (103 mg, 0.70 mmol), sodium carbonate (79.5 mg, 0.75 mmol), palladium (II) acetate (7.2 mg, 0.03 mmol) in acetone/water (1 : 1, 10 mL), stirring at 40–45 °C for 8 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 4 : 1), 4,4′‐(9‐oxo‐1,2,3,9‐tetrahydropyrrolo[2,1‐b]quinazoline‐5,7‐diyl) dibenzonitrile (14, 114.5 mg, 0.29 mmol, 98 %), colorless crystals, m. p. 261–262 °C.

R f=0.53 (ethyl acetate/petroleum ether 4 : 1). 1H NMR (400 MHz, CDCl3): δ=8.60 (1 H, d, J=2.3 Hz, OCCCH), 7.95 (1 H, d, J=2.3 Hz, OCCCHCCH), 7.81–7.83 (2 H, m, 2 o‐CH), 7.77 (6 H, m, 2 o‐CH, 4 m‐CH), 4.25 (2 H, t, J=7.2 Hz, NCH2), 3.15 (2 H, t, J=7.8, NCH2CH2CH 2), 2.31 (2H, m, NCH2CH2) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ=160.9 (CO), 160.3 (OCC), 146.7 (OCCCHC), 143.7 (NCCCCH), 143.1 (NCCCH), 138.0 (COCCH), 136.7 (NCN), 133.7 (OCCCHCCH), 133.0 (NCCCH), 131.9 (NCCCH), 131.3 (2 C, 2 ipso‐C), 127.9 (2 C, 2 NCC), 125.5 (NCCCHCHC), 122.0 (NCCCHCHC), 119.1 (NCCCH), 118.8 (NCCCH), 111.8 (NCCCHCH), 111.6 (NCCCHCH), 46.8 (NCH2), 32.9 (NCH2CH2 CH2), 19.7 (NCH2 CH2 CH2) ppm. IR (ATR): ν=2954 (CH2), 2226 (CN), 1676 (C=O), 1602 (C=N), 1504 (C=C), 1462 (C−N) cm−1. EI‐MS: m/z (%)=388 ([M]+, 3.3), 366 (89), 362 ([M−CN]+, 24), 351 (100), 286 ([M−C6H4CN]+, 3.2), 260 ([M−C6H4−2CN]+, 3.5), 184 ([M−2 C6H4CN]+, 5.4). HRMS calcd. for C25H16N4O 388.1324; found 388.1330.

Crystal structure analysis: [49] CCDC 2345691. Single crystals suitable for X‐ray crystallographic analysis were obtained by crystallization from ethyl acetate at 25 °C. C25H16N4O, colorless plates, Mr=388.42 g . mol−1, crystal system monoclinic, space group P 21/c, a=10.9030(5), b=7.4973(4), c=46.124(3) Å, α=90°, β=95.000(5)°, γ=90°, V=3755.5(3) Å3, Z=8, Z′=2, dcalc=1.374 g cm−3, μ=0.693 mm−1, crystal size 0.24×0.23×0.06 mm3, F(000)=1616, CryoLoop (20 micron, 0.2–0.3 mm, Hampton Research) XtaLAB AFC12 (RINC): Kappa single diffractometer, mirror monochromator, T=100.00(10) K, Cu−K α radiation (λ=1.54184 Å), 1.923°≤θ≤82.122°, index ranges −13≤h≤13, −9≤k≤9, −56≤l≤58, reflections llllcollected/unique 37418/7983, multi‐scan absorption correction, structure solution with ShelXT 2018/2 [55] with Intrinsic Phasing solution method and by using Olex2 [56] as the graphical interface, refinement with ShelXL 2019/3, [55] parameters/restraints 542/0, R1=0.0673 [l>2 s(l)], wR2=0.2004 (all data), S=1.137, final maximum/minimum difference electron density 0.415/−0.374 eÅ−3.

5,7Bis(dibenzo[b,d]thiophen4yl)2,3dihydropyrrolo[2,1b]quinazolin9(1H)‐one (15): GP; 5,7‐dibromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (5, 103 mg, 0.3 mmol), dibenzothiophene‐4‐boronic acid (160 mg, 0.70 mmol), sodium carbonate (79.5 mg, 0.75 mmol), palladium (II) acetate (7.2 mg, 0.03 mmol) in acetone/water (1 : 1, 10 mL), stirring at 40–45 °C for 20 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 3 : 1), 5,7‐bis (dibenzo[b,d]thiophen‐4‐yl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (15, 124 mg, 0.23 mmol, 75 %), yellow crystals, m. p. 195–196 °C.

R f=0.68 (ethyl acetate/petroleum ether 3 : 1). 1H NMR (400 MHz, CDCl3): δ=8.85 (1 H, d, J=2.2 Hz, OCCCH), 8.35 (1 H, d, J=2.2 Hz, OCCCHCCH), 8.18–8.24 (4 H, m, dibenzothiophenyl), 7.78–7.87 (2 H, m, dibenzothiophenyl), 7.58–7.68 (4 H, m, dibenzothiophenyl), 7.45–7.49 (4 H, m, dibenzothiophenyl), 4.25 (2 H, t, J=7.2 Hz, NCH2), 3.07 (2 H, t, J=7.8 Hz, NCH2CH2CH 2), 2.25 (2 H, m, NCH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=161.3 (OC), 159.5 (OCC), 146.7 (OCCCHC), 140.6 (NCC), 139.9 (OCCCH), 139.6 (OCCCHCCHC), 138.7 (CCCHCCH), 138.4 (NCN), 138.3 (SCC), 136.6 (SCC), 136.0 (SCC), 135.9 (SCCH), 135.8 (SCCH), 135.5 (SCCHCH), 135.3 (SCCHCH), 134.1 (SCCHCHCH), 129.1 (SCCHCHCH), 127.4 (SCCHCHCHCH), 127.0 (SCCHCHCHCH), 126.8 (SCCHCHCHCHC), 126.3 (SCCHCHCHCHC), 125.4 (SCCHCHCHCHCC), 124.6 (2 C, SCCHCHCHCHCC), 124.4 (SCCHCHCHCHCCC), 122.8 (SCCHCHCHCHCCC), 122.7 (SCCHCHCHCHCCCH), 121.9 (SCCHCHCHCHCCCH), 121.87 (SCCHCHCHCHCCCHCH), 121.82 (SCCHCHCHCHCCCHCH), 121.1 (SCCHCHCHCHCCCHCHCH), 121.0 (SCCHCHCHCHCCCHCHCH), 46.7 (NCH2), 32.8 (NCH2CH2 CH2), 19.7 (NCH2 CH2) ppm.

IR (ATR): ν=3059 (CH2), 1670 (C=O), 1604 (C=N), 1465 (C=C), 1415 (C−N) cm−1. EI−MS: m/z (%)=367 ([M‐dibenzothiophenyl]+, 10.5), 366 ([M‐dibenzothiophene]+, 89.5), 351 ([M‐dibenzothiophenyl−O]+, 100), 183 ([dibenzothiophenyl]+, 6.8). MS (TOF ES+): m/z (%)=551 ([M+H]+, 100), 552 ([M+2H]+, 37.4), 526 (26.4), 512 (8.8). HRMS: Calcd. for C35H23N2OS2 ([M+H]+) 551.1252; found 551.1236.

5Bromo7(quinolin8yl)2,3dihydropyrrolo[2,1b]quinazolin9(1H)one (16): GP; 5,7‐dibromo‐2,3‐dihydropyrrolo[2,1‐b]quinazoline‐9‐(1H)one (5, 103 mg, 0.3 mmol), 8‐quinolineboronic acid (121 mg, 0.70 mmol), sodium carbonate (79.5 mg, 0.75 mmol), palladium (II) acetate (7.2 mg, 0.03 mmol) in acetone/water (1 : 1, 10 mL), stirring at 40–45 °C for 23 h, aqueous sodium hydroxide (1 M, 2 mL), purification by column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 5 : 1), 5‐bromo‐7‐(quinolin‐8‐yl)‐2,3‐dihydropyrrolo[2,1‐b]quinazolin‐9(1H)‐one (16, 80 mg, 0.20 mmol, 68 %), yellow crystals, m. p. 359–360 °C.

R f=0.68 (ethyl acetate/petroleum ether 3 : 1). 1H NMR (500 MHz, CDCl3): δ=8.96 (1 H, dd, J=1.2, 2.7 Hz, CquinH), 8.57 (1 H, d, J=1.4 Hz, OCCCH), 8.47 (1 H, d, J=1.3, OCCCHCCH), 8.23 (1 H, dd, J=1.2, 5.5 Hz, CquinH), 7.89 (1 H, dd, J=0.9, 5.4 Hz, CquinH), 7.82 (1 H, dd, J=1.0, 4.8, CquinH), 7.64 (1 H, t, J=4.8 Hz, CquinH), 7.46 (1 H, dd, J=2.7, 5.5, CquinH), 4.24 (2 H, t, J=4.8, NCH2), 3.31 (2 H, t, J=5.2 Hz, NCH2CH 2), 2.33 (2 H, m, NCH2CH 2CH2) ppm. 13C{1H} NMR (125 MHz, CDCl3): δ=160.7 (OC), 160.5 (OCC), 150.7 (OCCCHCCHC), 146.3 (NCCCH), 145.8 (OCCCH), 140.6 (CBr), 138.6 (BrCCH), 138.2 (NCN), 136.5 (BrCCHCC), 130.7 (BrCCHCCCH), 128.9 (BrCCHCCCN), 128.7 (NCHCHCHC), 127.7 (NCHCHCHC), 126.5 (NCCCHCH), 121.9 (NCHCHCHC), 121.5 (NCHCHCHC), 121.2 (NCHCHCHCCH), 46.9 (NCH2), 33.1 (NCH2CH2 CH2), 19.8 (NCH2 CH2) ppm. IR (ATR): ν=2987 (CH2), 1668 (C=O), 1600 (C=N), 1471 (C=C), 1406 (C−N), 748 (C−Br) cm−1. EI‐MS: m/z (%)=392 ([M−H]+, 50), 391 ([M]+, 93), 390 ([M−H]+, 100), 312 ([M−79Br]+, 82.8), 310 ([M−81Br]+, 9.0), 155 (11.3). HRMS calcd. for C20H14BrN3O 391.0320; found 391.0337.

2Phenyl6,7,8,9tetrahydro11H pyrido[2,1 b ]quinazolin11one (17): GP; 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4, 139.5 mg, 0.5 mmol), phenylboronic acid (67 mg, 0.56 mmol), sodium carbonate (132.5 mg, 1.25 mmol) and palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone/water (1 : 1, 6 mL) were stirred at 40–45 °C for 3 h. Column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 10 : 1) gave 2‐phenyl‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (17, 124 mg, 0.45 mmol, 90 %), colorless crystals (m. p. 143–144 °C).

R f=0.62 (benzene/methanol 5 : 1). 1H NMR (400 MHz, CDCl3): δ=8.49 (1 H, d, J=2.4 Hz, OCCCH), 7.98 (1 H, dd, J=2.4, 8.0 Hz, NCCHCH), 7.66–7.71 (3 H, m, m‐CH, p‐CH), 7.44–7.49 (2 H, m, o‐CH), 7.37 (1 H, d, J=8.0 Hz, NCCH), 4.10 (2H, t, J=6.1 Hz, NCH2), 3.01 (2 H, t, J=6.7 Hz, NCCH2), 1.95–2.05 (4 H, m, NCH2CH 2, NCH2CH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=162.4 (CO), 155.0 (OCCCH), 146.8 (OCC), 139.9 (OCCCHC), 139.1 (NCCH), 133.3 (NCN), 129.1 (OCCCHCCH), 127.8 (OCCCHCC), 127.3 (NCCH), 127.1 (o‐CH), 124.6 (m‐CH), 120.8 (p‐CH), 42.5 (NCH2CH2 CH2), 32.1 (NCH2 CH2), 22.3 (NCH2CH2CH2 CH2), 19.5 (NCH2) ppm. IR (ATR): ν=1654 (C=O), 1600 (C=N), 1473 (C−N) cm−1. EI−MS: m/z (%)=276 ([M]+, 100), 275 ([M−H]+, 15), 261 ([M−H−CH2]+, 4.4), 220 ([M−H−(CH2)3−CH3]+, 2.5), 199 ([M−C6H5]+, 2.3), 185 ([M−C6H5−CH2]+, 2.4). HRMS: Calcd. for C18H16N2O 276.1263; found: 276.1264.

4(11Oxo6,8,9,11tetrahydro7H pyrido[2,1b]quinazolin2yl) benzonitrile (18): GP; 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4, 139.5 mg, 0.5 mmol), (4‐cyanophenyl) boronic acid (81.0 mg, 0.55 mmol), sodium carbonate (132.5 mg, 1.25 mmol) and palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone / water (2 : 1, 6 mL) were stirred at 40–45 °C for 3 h. Column chromatography (20×1 cm, SiO2, ethyl acetate) gave 4‐(11‐oxo‐6,8,9,11‐tetrahydro‐7H‐pyrido[2,1‐b]quinazolin‐2‐yl) benzonitrile (18, 138.5 mg, 0.46 mmol, 92 %), colorless crystals (m. p. 194–195 °C).

R f=0.36 (ethyl acetate1H NMR (400 MHz, CDCl3): δ=8.49 (1 H, d, J=2.2 Hz, OCCCH), 7.95 (1 H, dd, J=2.3, 8.5 Hz, NCCHCH), 7.68–7.79 (5 H, m, NCCH, o‐CH, m‐CH), 4.11 (2 H, t, J=6.2 Hz, NCH2), 3.03 (2 H, t, J=6.7 Hz, NCCH2), 1.95–2.07 (4 H, m, NCH2CH 2, NCH2CH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=162.2 (CN), 155.9 (CO), 147.7 (NCH2), 144.3 (OCC), 136.8 (OCCCHC), 132.92 (m‐CH), 127.8 (o‐CH), 127.6 (OCCCHCC), 125.3 (NCN), 121.0 (NCCHCH), 118.9 (NCCH), 111.4 (NCCH), 42.7 (NCH2), 32.2 (NCH2CH2CH2 CH2), 22.2 (NCH2 CH2), 19.4 (NCH2CH2 CH2) ppm. IR (ATR): ν=2220 (CN), 1661 (C=O), 1583 (C=N), 1492 (C−N) cm−1. MS (TOF ES+): m/z (%)=303 ([M+2H]+, 16.5), 302 ([M+H]+, 100), 287 ([M−CH2]+, 1.3), 261 ([M−C3H4 (cyclopropene)]+, 1.3), 145 (4‐oxo‐3,4‐dihydroquinazolin‐1‐ium, 4.9). HRMS: Calcd. for C19H15N3O 302.1293; found 302.1465.

Crystal structure analysis: [49] CCDC 1994934. Single crystals suitable for X‐ray crystallographic analysis were obtained by crystallization from ethyl acetate at 25 °C. C19H15N3O, colorless prism, Mr=301.34 g . mol−1, crystal system monoclinic, space group C2/c, a=16.456(3), b=6.814(1), c=27.286(6) Å, α=90°, β=99.65(3)°, γ=90°. V=3016.5(11) Å3, Z=8, dcalc=1.327 g cm−3, m=0.674 mm−1, crystal size 0.48×0.44×0.31 mm3, F(000)=1264, CCD Xcalibur diffractometer, graphite monochromator, T=291(2) K, Mo−K α radiation (λ=0.71073 Å), 3.29≤θ≤75.78°, index ranges −20≤h≤10, −8≤k≤8, −34≤l≤32, reflections collected/unique 6013/3064, multi‐scan absorption correction, structure solution and refinement with SHELXL, [57] parameters/restrains 227/0, R1=0.0505 [l>2 s(l)], wR2=0.1398 (all data all data R1=0.0610, wR2=0.1536), S=1.031, final maximum/minimum difference electron density 0.184/−0.262 eÅ−3.

2(3,4,5Trimethoxyphenyl)6,7,8,9tetrahydro11H pyrido[2,1 b ]quinazolin11one (19): GP; 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4, 139.5 mg, 0.5 mmol), (3,4,5‐trimethoxyphenyl)boronic acid (127.2 mg, 0.6 mmol), sodium carbonate (132.5 mg, 1.25 mmol) and palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone/water (2 : 1, 6 mL) were stirred at 40–45 °C for 3 h. Column chromatography (20×1 cm, SiO2, ethyl acetate / petroleum ether 6 : 1) gave 2‐(3,4,5‐trimethoxyphenyl)‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (19, 180 mg, 0.49 mmol, 98 %), yellow crystals (m. p. 160–161 °C).

R f=0.30 (ethyl acetate). 1H NMR (400 MHz, CDCl3): δ=8.43 (1H, d, J=1.9 Hz, OCCCH), 7.93 (1 H, dd, J=2.2, 8.5 Hz, NCCHCH), 7.65 (1 H, d, J=8.5 Hz, NCCH), 6.86 (2 H, s, o‐CH), 4.10 (2 H, t, J=6.1 Hz, NCH2), 3.94 (6 H, s, m‐OCH3), 3.89 (3 H, s, p‐OCH3), 3.02 (2 H, t, J=6.7 Hz, NCH2CH2CH2CH 2), 1.97–2.07 (4 H, m, NCH2CH 2, NCH2CH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=162.4 (CO), 155.0 (OCCCHC), 153.7 (OCCCH), 146.7 (NCCHCH), 139.1 (OCCCH), 138.1 (NCCH), 135.8 (NCCH), 133.2 (NCN), 127.0 (o‐CH), 124.4 (m‐CO), 120.7 (p‐CO), 104.5 (NCCHCHCC), 61.1 (p‐COCH3), 56.4 (o‐COCH3), 42.6 (NCH2CH2 CH2), 32.1 (NCH2 CH2), 22.2 (NCH2CH2CH2 CH2), 19.5 (NCH2) ppm. IR (ATR): ν=1664 (C=O), 1616 (C=N), 1473 (C−N) cm−1. TOF EI‐MS: m/z (%)=367 ([M+H]+, 8.4), 366 ([M]+, 100), 351 ([M−CH3]+, 97), 323 (9.5), 293 (4.2), 237 (5.3), 184 (3.1). HRMS: Calcd. for C21H22N2O4 366.1580; found: 366.1576.

Crystal structure analysis: [49] CCDC 2344455. Single crystals suitable for X‐ray crystallographic analysis were obtained by crystallization from ethyl acetate at 25 °C. C21H22N2O4, yellow prism, Mr=366.40 g . mol−1, crystal system monoclinic, space group P 1 21/c 1, a=14.077(2), b=8.7947(14), c=15.364(2) Å, α=90°, β=108.393(5)°, γ=90°. V=1804.9(5) Å3, Z=4, dcalc=1.348 g cm−3, μ=0.094 mm−1, crystal size 0.62×0.38×0.35 mm3, F(000)=776, Bruker SMART X2S diffractometer, graphite crystal monochromator, T=200(2) K, Mo−K α radiation (λ=0.71073 Å), 2.71≤θ≤27.54°, index ranges −18≤h≤18, −11≤k≤11, −14≤l≤19, reflections collected/unique 4156/2746, multi‐scan absorption correction, structure solution and refinement with SHELXL, [57] parameters/restrains 248/0, R1=0.0600 [l>2 s(l)], wR2=0.1676, S=1.056, final maximum/minimum difference electron density 0.634/−0.321 eÅ−3.

2(Benzo[b]thiophen3yl)6,7,8,9tetrahydro11H pyrido[2,1b]quinazolin11one (20): GP; 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4, 139.5 mg, 0.5 mmol), benzothiophenyl‐3‐boronic acid (106.8 mg, 0.6 mmol), sodium carbonate (132.5 mg, 1.25 mmol) and palladium(II) acetate (9.43 mg, 0.042 mmol) in acetone / water (2 : 1, 6 mL) were stirred at 40–45 °C fo 3 h. Column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 6 : 1) gave 2‐(benzo[b]thiophen‐3‐yl)‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (20, 158 mg, 0.47 mmol, 95 %), colorless crystals (m. p. 320 °C).

R f=0.34 (ethyl acetate/petroleum ether 6 : 1). 1H NMR (400 MHz, CDCl3): δ=8.49 (1 H, d, J=2.0 Hz, OCCCH), 7.91–7.97 (3 H, m, NCCHCH, SCCH, SCCHCHCH), 7.71 (1 H, d, J=8.4 Hz, NCCH), 7.51 (1 H, s, SCH), 7.39–7.42 (2 H, m, SCCHCH, SCCHCHCHCH), 4.11 (2 H, t, J=6.1 Hz, NCH2), 3.04 (2 H, t, J=6.7 Hz, NCH2CH2CH2CH 2), 1.97–2.07 (4 H, m, NCH2CH 2, NCH2CH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=162.3 (CO), 155.2 (OCCCHC), 146.9 (OCCCHCC), 140.9 (OCCCH), 137.7 (SCH), 136.9 (OCCCH), 134.8 (NCCH), 134.0 (NCCHCH), 127.0 (NCN), 126.3 (SCCH, SCCCH), 124.7 (SCCHCHCHCH), 124.4 (SCCH), 123.1 (SCCHCH), 122.8 (SCCHCHCH), 120.8 (NCCH), 42.6 (NCH2CH2 CH2), 32.1 (NCH2 CH2), 22.3 (NCH2CH2CH2 CH2), 19.5 (NCH2) ppm. IR (ATR): ν=1654 (C=O), 1618 (C=N), 1483 (C−N). EI‐MS: m/z (%)=333 ([M+H]+, 44), 332 ([M]+, 100), 317, 195, 158. HRMS: Calcd. for C20H16N2OS 332.0983; found: 332.0985.

2(Dibenzo [b,d] thiophen4yl)6,7,8,9tetrahydro11H pyrido[2,1 b ]quinazolin11one (21): GP; 2‐bromo‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (4, 139.5 mg, 0.5 mmol), dibenzothiophenyl‐4‐boronic acid (137 mg, 0.6 mmol), sodium carbonate (132.5 mg, 1.25 mmol) and palladium (II) acetate (9.43 mg, 0.042 mmol) in acetone / water (2 : 1, 6 mL) were stirred at 40–45 °C for 7 h. Column chromatography (20×1 cm, SiO2, ethyl acetate/petroleum ether 4 : 1) gave 2‐(dibenzo[b,d]thiophen‐4‐yl)‐6,7,8,9‐tetrahydro‐11H‐pyrido[2,1‐b]quinazolin‐11‐one (21, 180 mg, 0.47 mmol, 94 %), colorless crystals (m. p. 177–179 °C).

R f=0.13 (ethyl acetate). 1H NMR (400 MHz, CDCl3): δ=8.65 (1 H, d, J=2.1 Hz, OCCCH), 8.17–8.21 (2 H, m, SCCHCH, SCCHCHCH), 8.13 (1 H, dd, J=8.4, J=2.2 Hz, NCCHCH), 7.81–7.84 (1 H, m, SCCCHCH), 7.75 (1 H, d, J=8.4 Hz, NCCH), 7.55–7.60 (2 H, m, SCCHCHCHCH, SCCCHCHCH), 7.44–7.49 (2 H, m, SCCH, SCCCH), 4.11 (2 H, t, J=6.1 Hz, NCH2), 3.04 (2 H, t, J=6.6 Hz, NCH2CH2CH2CH 2), 1.95–2.08 (4H, m, NCH2CH 2, NCH2CH2CH 2) ppm. 13C{1H} NMR (100.6 MHz, CDCl3): δ=162.3 (CO), 155.4 (OCCCHC), 147.2 (OCCCHCC), 139.6 (OCCCH), 138.7 (SCCCCH) 138.5 (SCCH), 136.5 (OCCCH), 135.8 (NCCH), 135.8 (NCCHCH), 134.3 (NCN), 127.2 (SCCHCHCHCHC), 127.1 (SCCHCHCHCHCC), 127.0 (SCCHCHCHCHCCC), 126.3 (SCCH), 125.3 (SCCCHCH), 124.6 (SCCHCH), 122.8 (SCCHCHCH), 121.9 (SCCHCHCHCH), 121.0 (SCCCHCHCH), 120.8 (NCCH), 42.6 (NCH2CH2 CH2), 32.1 (NCH2 CH2), 22.2 (NCH2CH2CH2 CH2), 19.5 (NCH2) ppm. IR (ATR): ν=1672 (C=O), 1600 (C=N), 1458 (C−N) cm−1. EI‐MS: m/z (%)=383 ([M+H]+, 12.6), 382 ([M]+, 100), 191 ([M]2+ or 4‐oxo‐3‐propyl‐1,2,3,4‐tetrahydroquinazolin‐1‐ium, 4). HRMS: Calcd. for C24H18N2OS 382.1140; found: 382.1142.

Supporting Information Summary

1H and 13C{1H} NMR spectra of compounds 35 as well as of the synthesized new compounds are available in the Supporting Information.

Conflict of Interests

The authors declare no conflict of interest.

1.

Supporting information

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supporting Information

Acknowledgments

We gratefully acknowledge a Research Fellowship by the German Academic Exchange Service (DAAD) and a Georg Forster Research Fellowship for Experienced Researchers of the Alexander von Humboldt Foundation for B. E. (UZB 1186936GFE). Also, we thank for financial support of the Ministry of Higher Education, Science and Innovations of Uzbekistan (Grant No F‐FA‐2021‐408 “Study of the regularities of introduction of pharmacophore fragments into the molecule on the basis of modern cross‐coupling and heterocyclization reactions”. Open Access funding enabled and organized by Projekt DEAL.

Elmuradov B., Okmanov R., Juraev B., Dräger G., Butenschön H., ChemistryOpen 2024, 13, e202400197. 10.1002/open.202400197

Contributor Information

Burkhon Elmuradov, Email: b_elmuradov@mail.ru.

Prof. Dr. Holger Butenschön, Email: holger.butenschoen@mbox.oci.uni-hannover.de, https://www.oci.uni‐hannover.de/de/holger‐butenschoen.

Data Availability Statement

NMR spectra of compounds 3–5 as well as of new compounds are available in the Supporting Information of this article. Crystal structure analyses were deposited with the CCDC.

References

  • 1. Shakhidoyatov K. M., Irisbaev A., Yun L. M., Oripov E., Kadyrov C. S., Chem. Heterocycl. Compd. 1976, 12, 1286–1291; [Google Scholar]; Khim. Geterotsikl. Soedin. 1564–1569. [Google Scholar]
  • 2. Oripov E., Shakhidoyatov K. M., Kadyrov C. S., Abdullaev N. D., Chem. Heterocycl. Compd. 1979, 15, 556–564; [Google Scholar]; Khim. Geterotsikl. Soedin. 1979, 684–91. [Google Scholar]
  • 3. Jain M. P., Koul S. K., Dhar K. L., Atal C. K., Phytochemistry 1980, 19, 1880–1882. [Google Scholar]
  • 4. Wu X., Qin G., Cheung K. K., Cheng K. F., Tetrahedron 1997, 53, 13323–13328. [Google Scholar]
  • 5. Atta-Ur-Rahman, Sultana N., Akhter F., Nighat F., Choudhary M. I., Nat. Prod. Lett. 1997, 10, 249–256. [Google Scholar]
  • 6. Faskhutdinov M. F., Telezhenetskaya M. V., Levkovich M. G., Abdullaev N. D., Chem. Nat. Compd. 2000, 36, 602–605. [Google Scholar]
  • 7. Shrivastava N., Srivastava A., Banerjee A., Nivsarkar M., J. Herb. Pharmacother. 2006, 6, 43–49. [PubMed] [Google Scholar]
  • 8. Ma F., Du H., Eur. J. Med. Chem. 2017, 140, 118–127. [DOI] [PubMed] [Google Scholar]
  • 9. Nepali K., Sharma S., Ojha R., Dhar K. L., Med. Chem. Res. 2013, 22, 1–15. [Google Scholar]
  • 10. Shakhidoyatov K. M., Elmuradov B. Z., Chem. Nat. Compd. 2014, 50, 781–800. [Google Scholar]
  • 11.CAS SciFinder substructure search, Dec. 13, 2023.
  • 12. Chowdhury B. K., Hirani S. K., Ngur D., J. Chromatogr. 1987, 390, 439–445. [DOI] [PubMed] [Google Scholar]
  • 13. Shakhidoyatov K. M., Belova G. A., Khim. Prir. Soedin. 1990, 659. [Google Scholar]
  • 14. D′Yakonov A. L., Telezhenetskaya M. V., Tashkodzhaev B., Khim. Prir. Soedin. 1992, 233–240. [Google Scholar]
  • 15. Bruskov V. P., Telezhenetskaya M. V., D′Yakonov A. L., Chem. Nat. Compd. 1999, 35, 196–200. [Google Scholar]
  • 16. Abdurazakov A. S., Elmuradov B. Z., Shakhidoyatov K. M., O′zb. Kim. J. 2007, 46–50. [Google Scholar]
  • 17. Jahng K. C., Kim S. I., Kim D. H., Seo C. S., Son J.-K., Lee S. H., Lee E. S., Jahng Y., Chem. Pharm. Bull. 2008, 56, 607–609. [DOI] [PubMed] [Google Scholar]
  • 18. Shakhidoyatov K. M., Mukarramov N. I., Utaeva F. R., Chem. Nat. Compd. 2008, 44, 625–629. [Google Scholar]
  • 19. Belovodskii A. V., Shul′ts E. E., Shakirov M. M., Romanov V. E., Elmuradov B. Z., Shakhidoyatov K. M., Tolstikov G. A., Chem. Nat. Compd. 2011, 46, 880–885; [Google Scholar]; Khim. Prir. Soedin. 2010, 747–751. [Google Scholar]
  • 20. Jafari E., Khodarahmi G. A., Hakimelahi G. H., Tsai F. Y., Hassanzadeh F., Res. Pharm. Sci. 2011, 6, 93–100. [PMC free article] [PubMed] [Google Scholar]
  • 21. Ojo B., Chowdhury B. K., Synth. Commun. 2012, 42, 1002–1009. [Google Scholar]
  • 22.Z. Li, Q. Xu, C. Yu, C. Yee, I. S. L. Gwaltney, B. W. Metcalf, S. Richards, M. A. Lardy, L. Setti, H. Sham, US20150315198.
  • 23. Jain M. P., Gupta V. N., Atal C. K., Sharma S. K., Subrahmanyam C. V. S., Indian Drugs 1986, 23, 342. [Google Scholar]
  • 24. Richers M. T., Zhao C., Seidel D., Beilstein J. Org. Chem. 2013, 9, 1194–1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Miyaura N., Suzuki A., Chem. Rev. 1995, 95, 2457–2483. [Google Scholar]
  • 26. Nicolaou K. C., Bulger P. G., Sarlah D., Angew. Chem. 2005, 117, 4516–4563; [Google Scholar]; Angew. Chem. Int. Ed. 2005, 44, 4442–4489. [DOI] [PubMed] [Google Scholar]
  • 27. Stanforth S. P., Tetrahedron 1998, 54, 263–303. [Google Scholar]
  • 28. Suzuki A., Astruc D., Modern Arene Chemistry, Wiley-VCH, Weinheim, 2002, 53–106. [Google Scholar]
  • 29. Elmuradov B., Dräger G., Butenschön H., Eur. J. Org. Chem. 2020, 3430–3440. [Google Scholar]
  • 30. Elmuradov B., Shakhidoyatov K., Dräger G., Butenschön H., Eur. J. Org. Chem. 2016, 483–492. [Google Scholar]
  • 31. Abdurazakov A. S., Elmuradov B. Z., Ortikov I. S., Levkovich M. G., Shakhidoyatov K. M., Chem. Nat. Compd. 2013, 49, 305–310; [Google Scholar]; Khim. Prir. Soedin. 2013, 49, 259–263. [Google Scholar]
  • 32. Elmuradov B. Z., Abdurazakov A. S., Shakhidoyatov K. M., Chem. Nat. Compd. 2010, 46, 262–267; [Google Scholar]; Khim. Prir. Soedin. 2010, 220–225. [Google Scholar]
  • 33. Abdurazakov A. S., Elmuradov B. Z., Turdibaev Z. E., Shakhidoyatov K. M., Chem. Nat. Compd. 2009, 45, 402–408. [Google Scholar]
  • 34. Shakhidayatov K., Irisbaev A., Kadyrov C. S., Chem. Nat. Compd. 1974, 708–709; [Google Scholar]; Khim. Prir. Soedin. 1974, 681–681. [Google Scholar]
  • 35. Kozlowski M. C., Morgan B. J., Linton E. C., Chem. Soc. Rev. 2009, 38, 3193–3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Bringmann G., Günther C., Ochse M., Schupp O., Tasler S., Prog. Chem. Org. Nat. Prod. 2001, 82, 1–293. [DOI] [PubMed] [Google Scholar]
  • 37. Anctil E. J. G., Snieckus V., J. Organomet. Chem. 2002, 653, 150–160. [Google Scholar]
  • 38. Black D. A., Fagnou K., Sci. Synth. 2009, 45b, 547–626. [Google Scholar]
  • 39. Bringmann G., Breuning M., Pfeifer R.-M., Schenk W. A., Kamikawa K., Uemura M., J. Organomet. Chem. 2002, 661, 31–47. [Google Scholar]
  • 40. Bringmann G., Gulder T., Gulder T. A. M., Breuning M., Chem. Rev. 2011, 111, 563–639. [DOI] [PubMed] [Google Scholar]
  • 41. Grzybowski M., Skonieczny K., Butenschön H., Gryko D. T., Angew. Chem. 2013, 125, 10084–10115; [DOI] [PubMed] [Google Scholar]; Angew. Chem. Int. Ed. 2013, 52, 9900–9930. [DOI] [PubMed] [Google Scholar]
  • 42. Fricke C., Reid W. B., Schoenebeck F., Eur. J. Org. Chem. 2020, 2020, 7119–7130. [Google Scholar]
  • 43. Goebel J. F., Zeng Z., Goossen L. J., Synthesis 2022, 54, 565–569. [Google Scholar]
  • 44. Hussain I., Singh T., Adv. Synth. Catal. 2014, 356, 1661–1696. [Google Scholar]
  • 45. Li B.-J., Yang S.-D., Shi Z.-J., Synlett 2008, 949–957. [Google Scholar]
  • 46. Miyaura N., Liebeskind L. S., Adv. Metal-Org. Chem. JAI Press, London, 1998, 6, 187–243. [Google Scholar]
  • 47. Hussain I., Capricho J., Yawer M. A., Adv. Synth. Catal. 2016, 358, 3907. [Google Scholar]
  • 48. Hussain I., Capricho J., Yawer M. A., Adv. Synth. Catal. 2016, 358, 3320–3349. [Google Scholar]
  • 49.Deposition Numbers2344447 (for 9), 2344448 (for 10), 2344450 (for 14) 2345691 (for 15), 1994934 (for 19), 2344455 (for 20) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
  • 50.H. Fan, X. Liang, D. Hang, L. Duan, Z. Cao, Q. Ban, CN112625042.
  • 51.A. H. Parham, C. Ehrenreich, WO2022184601.
  • 52. Mukarramov N. I., Okmanov R. Y., Utaeva F. R., Turgunov K. K., Tashkhodzhaev B., Khakimova Z. M., Shakhidoyatov K. M., Chem. Nat. Compd. 2009, 45, 854–858. [Google Scholar]
  • 53.Spartan 20 v. 21.21.24 (Mac parallel), wB97X−D, 26–311+G**, Wavefunction Inc., Irvine, CA, 2020.
  • 54. Still W. C., Kahn M., Mitra A., J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar]
  • 55. Sheldrick G. M., Acta Cryst. Sect. C 2015, 71, 3–8. [Google Scholar]
  • 56. Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl. Crystallogr. 2009, 42, 339–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Sheldrick G. M., Acta Cryst. Sect. A 2008, 64, 112–122. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supporting Information

Data Availability Statement

NMR spectra of compounds 3–5 as well as of new compounds are available in the Supporting Information of this article. Crystal structure analyses were deposited with the CCDC.


Articles from ChemistryOpen are provided here courtesy of Wiley

RESOURCES