Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Feb 1;193(2):435–440. doi: 10.1042/bj1930435

Glucose 6-phosphate activation of pyruvate kinase from Mycobacterium smegmatis.

R Kapoor, T A Venkitasubramanian
PMCID: PMC1162624  PMID: 7305941

Abstract

1. Activation of glucose 6-phosphate is one of the unique properties of pyruvate kinase from Mycobacterium smegmatis. 2. Pyruvate kinase, partially purified from ultrasonic extracts of the mycobacteria by (NH4)2SO4 fractionation, exhibited sigmoidal kinetics at various concentrations of phosphoenolpyruvate, with a high degree of co-operativity (Hill coefficient, h = 3.7) and S0.5 value of 1.0 mM. 3. In the presence of glucose 6-phosphate, the degree of co-operativity shown by the phosphoenolpyruvate saturation curve was decreased to h = 2.33 and the S0.5 value was lowered to 0.47 mM. 4. The enzyme was activated by AMP and ribose 5-phosphate also, but the activation constant was lowest with glucose 6-phosphate (0.24 mM). 5. The enzyme was strongly inhibited by ATP at all phosphoenolpyruvate concentrations. The concentrations of ATP required to produce half-maximal inhibition of enzyme activity at non-saturating (0.2 mM) and saturating (2 mM) phosphoenolpyruvate concentrations were 1.1 mM and 3 mM respectively. 6. The inhibition of ATP was partially relieved by glucose 6-phosphate. 7. The enzyme exhibited Michaelis-Menten kinetics with ADP as the variable substrate, with an apparent Km of 0.66 mM. 8. The enzyme required Mg2+ or Mn2+ ions for activity. It was not activated by univalent cations. 9. The kinetic data indicate that under physiological conditions glucose 6-phosphate probably plays a significant role in the regulation of pyruvate kinase activity.

Full text

PDF
435

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai N. J., Pai M. R., Murthy P. S., Venkitasubramanian T. A. Pathways of glucose catabolism in Mycobacterium smegmatis. Can J Microbiol. 1976 Sep;22(9):1374–1380. doi: 10.1139/m76-201. [DOI] [PubMed] [Google Scholar]
  2. Benziman M. Factors afecting the activity of pyruvate kinase of Acetobacter xylinum. Biochem J. 1969 May;112(5):631–636. doi: 10.1042/bj1120631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Diesterhaft M., Freese E. Pyruvate kinase of bacillus subtilis. Biochim Biophys Acta. 1972 May 12;268(2):373–380. doi: 10.1016/0005-2744(72)90332-4. [DOI] [PubMed] [Google Scholar]
  4. Dudouet D., Le Cam-Sagniez M., Bernard S. Purification et propriétés cinétiques de la pyruvate-kinase de Mycobacterium phlei. Biochimie. 1973;55(6):637–642. doi: 10.1016/s0300-9084(73)80015-x. [DOI] [PubMed] [Google Scholar]
  5. Endrenyi L., Fajszi C., Kwong F. H. Evaluation of Hill slopes and Hill coefficients when the saturation binding or velocity is not known. Eur J Biochem. 1975 Feb 21;51(2):317–328. doi: 10.1111/j.1432-1033.1975.tb03931.x. [DOI] [PubMed] [Google Scholar]
  6. Hess B., Haeckel R., Brand K. FDP-activation of yeast pyruvate kinase. Biochem Biophys Res Commun. 1966 Sep 22;24(6):824–831. doi: 10.1016/0006-291x(66)90322-6. [DOI] [PubMed] [Google Scholar]
  7. Hess B., Haeckel R. Interaction between potassium-, ammonium- and fructose-1,6-diphosphate activation of yeast pyruvate kinase. Nature. 1967 May 20;214(5090):848–849. doi: 10.1038/214848a0. [DOI] [PubMed] [Google Scholar]
  8. Liao C. L., Atkinson D. E. Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: pyruvate kinase. J Bacteriol. 1971 Apr;106(1):37–44. doi: 10.1128/jb.106.1.37-44.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maeba P., Sanwal B. D. The regulation of pyruvate kinase of Escherichia coli by fructose diphosphate and adenylic acid. J Biol Chem. 1968 Jan 25;243(2):448–450. [PubMed] [Google Scholar]
  10. Ng S. K., Hamilton I. R. Purification and regulatory properties of pyruvate kinase from Veillonella parvula. J Bacteriol. 1975 Jun;122(3):1274–1282. doi: 10.1128/jb.122.3.1274-1282.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ozaki H., Shiio I. Regulation of the TCA and glyoxylate cycles in Brevibacterium flavum. II. Regulation of phosphoenolpyruvate carboxylase and pyruvate kinase. J Biochem. 1969 Sep;66(3):297–311. doi: 10.1093/oxfordjournals.jbchem.a129148. [DOI] [PubMed] [Google Scholar]
  12. Schedel M., Klemme J. H., Schlegel H. G. Regulation of C3-enzymes in facultative phototrophic bacteria: the cold-labile pyruvate kinase of Rhodopseudomonas sphaeroides. Arch Microbiol. 1975 May 5;103(3):237–245. doi: 10.1007/BF00436356. [DOI] [PubMed] [Google Scholar]
  13. Somani B. L., Valentini G., Malcovati M. Purification and molecular properties of the AMP-activated pyruvate kinase from Escherichia coli. Biochim Biophys Acta. 1977 May 12;482(1):52–63. doi: 10.1016/0005-2744(77)90353-9. [DOI] [PubMed] [Google Scholar]
  14. Stadtman E. R. Allosteric regulation of enzyme activity. Adv Enzymol Relat Areas Mol Biol. 1966;28:41–154. doi: 10.1002/9780470122730.ch2. [DOI] [PubMed] [Google Scholar]
  15. Tanaka T., Harano Y., Sue F., Morimura H. Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J Biochem. 1967 Jul;62(1):71–91. doi: 10.1093/oxfordjournals.jbchem.a128639. [DOI] [PubMed] [Google Scholar]
  16. Waygood E. B., Sanwal B. D. The control of pyruvate kinases of Escherichia coli. I. Physicochemical and regulatory properties of the enzyme activated by fructose 1,6-diphosphate. J Biol Chem. 1974 Jan 10;249(1):265–274. [PubMed] [Google Scholar]
  17. Wilke D., Schlegel H. G. Regulation of the pyruvate kinase from Alcaligenes eutrophus H 16 in vitro and in vivo. Arch Microbiol. 1975 Oct 27;105(2):109–115. doi: 10.1007/BF00447123. [DOI] [PubMed] [Google Scholar]
  18. Wood T. The inhibition of pyruvate kinase by ATP. Biochem Biophys Res Commun. 1968 Jun 10;31(5):779–785. doi: 10.1016/0006-291x(68)90630-x. [DOI] [PubMed] [Google Scholar]
  19. Yamada T., Carlsson J. Glucose-6-phosphate-dependent pyruvate kinase in Streptococcus mutans. J Bacteriol. 1975 Oct;124(1):562–563. doi: 10.1128/jb.124.1.562-563.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zink M. W. Regulation of pyruvate kinases from Fusarium oxysporum. Can J Microbiol. 1977 Oct;23(10):1346–1359. doi: 10.1139/m77-204. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES