Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 1;193(3):737–742. doi: 10.1042/bj1930737

Cleavage by trypsin and by the proteinase from Armillaria mellea at epsilon-N-formyl-lysine residues.

F P Barry, S Doonan, C A Ross
PMCID: PMC1162661  PMID: 6796050

Abstract

Kinetic studies were made of the hydrolysis by trypsin of alpha-N-acetylglycyl-L-lysine methyl ester and of its neutral analogue alpha-N-acetylglycyl-epsilon-N-formyl-L-lysine methyl ester. The latter substance is a moderately good substrate for trypsin, and this observation is discussed in terms of the substrate specifically of the enzyme. The actions of trypsin and of the lysine-specific proteinase from Armillaria mellea on both a native and a formylated polypeptide substrate were compared. Both enzymes were found to hydrolyse specifically bonds to epsilon-N-formyl-lysine in the formylated substrate.

Full text

PDF
737

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry F. P., Chapman M. D., Doonan S., Ross C. A. Cleavage by trypsin at N-epsilon-formyl-lysine residues [proceedings]. Biochem Soc Trans. 1979 Jun;7(3):519–521. doi: 10.1042/bst0070519. [DOI] [PubMed] [Google Scholar]
  2. Bender M. L., Begué-Cantón M. L., Blakeley R. L., Brubacher L. J., Feder J., Gunter C. R., Kézdy F. J., Killheffer J. V., Jr, Marshall T. H., Miller C. G. The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase. J Am Chem Soc. 1966 Dec 20;88(24):5890–5913. doi: 10.1021/ja00976a034. [DOI] [PubMed] [Google Scholar]
  3. Benoiton L., Deneault J. The hydrolysis of two epsilon-N-methyl-L-lysine derivatives by trypsin. Biochim Biophys Acta. 1966 Mar 7;113(3):613–616. doi: 10.1016/s0926-6593(66)80021-8. [DOI] [PubMed] [Google Scholar]
  4. Breithaupt H., Habermann E. Mastzelldegranulierendes Peptid (MCD-Pepid) aus Bienengift: Isolierung, biochemische und pharmakologische Eigenschaften. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;261(3):252–270. [PubMed] [Google Scholar]
  5. Cornish-Bowden A., Porter W. R., Trager W. F. Evaluation of distribution-free confidence limits for enzyme kinetic parameters. J Theor Biol. 1978 Sep 21;74(2):163–175. doi: 10.1016/0022-5193(78)90069-3. [DOI] [PubMed] [Google Scholar]
  6. Doonan S., Doonan H. J., Hanford R., Vernon C. A., Walker J. M., da Airold L. P., Bossa F., Barra D., Carloni M., Fasella P. The primary structure of aspartate aminotransferase from pig heart muscle. Digestion with a proteinase having specificity for lysine residues. Biochem J. 1975 Sep;149(3):497–506. doi: 10.1042/bj1490497d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gauldie J., Hanson J. M., Rumjanek F. D., Shipolini R. A., Vernon C. A. The peptide components of bee venom. Eur J Biochem. 1976 Jan 15;61(2):369–376. doi: 10.1111/j.1432-1033.1976.tb10030.x. [DOI] [PubMed] [Google Scholar]
  9. Gauldie J., Hanson J. M., Shipolini R. A., Vernon C. A. The structures of some peptides from bee venom. Eur J Biochem. 1978 Feb;83(2):405–410. doi: 10.1111/j.1432-1033.1978.tb12106.x. [DOI] [PubMed] [Google Scholar]
  10. Gorecki M., Shalitin Y. Non cationic substrates of trypsin. Biochem Biophys Res Commun. 1967 Oct 26;29(2):189–193. doi: 10.1016/0006-291x(67)90585-2. [DOI] [PubMed] [Google Scholar]
  11. HARTLEY B. S., KILBY B. A. The reaction of p-nitrophenyl esters with chymotrypsin and insulin. Biochem J. 1954 Feb;56(2):288–297. doi: 10.1042/bj0560288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Habermann E., Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed] [Google Scholar]
  13. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. INAGAMI T., MITSUDA H. THE MECHANISM OF THE SPECIFICITY OF TRYPSIN CATALYSIS. II. COMPARISON OF TRYPSIN AND ALPHA-CHYMOTRYPSIN IN THE NONSPECIFIC CATALYSES OF TEH HYDROLYSIS OF ACETYLGLYCINE ETHYL ESTER. J Biol Chem. 1964 May;239:1388–1394. [PubMed] [Google Scholar]
  15. Keil-Dlouhá V., V, Zylber N., Imhoff J. -M., Tong N. -T., Keil B. Proteolytic activity of pseudotrypsin. FEBS Lett. 1971 Sep 1;16(4):291–295. doi: 10.1016/0014-5793(71)80373-3. [DOI] [PubMed] [Google Scholar]
  16. LINDLEY H. A new synthetic substrate for trypsin and its application to the determination of the amino-acid sequence of proteins. Nature. 1956 Sep 22;178(4534):647–648. doi: 10.1038/178647a0. [DOI] [PubMed] [Google Scholar]
  17. Lewis W. G., Basford J. M., Walton P. L. Specificity and inhibition studies of Armillaria mellea protease. Biochim Biophys Acta. 1978 Feb 10;522(2):551–560. doi: 10.1016/0005-2744(78)90087-6. [DOI] [PubMed] [Google Scholar]
  18. Porter W. R., Trager W. F. Improved non-parametric statistical methods for the estimation of Michaelis-Menten kinetic parameters by the direct linear plot. Biochem J. 1977 Feb 1;161(2):293–302. doi: 10.1042/bj1610293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES