Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 1;193(3):985–990. doi: 10.1042/bj1930985

Differential inhibition of rat liver DNA polymerases in vitro by direct-acting carcinogens and the protective effect of a thiol reducing agent.

J Y Chan, F F Becker
PMCID: PMC1162693  PMID: 7305970

Abstract

The direct-acting carcinogens acetoxyacetylaminofluorene, methylnitrosourea, and N-methyl-N'-nitro-N-nitrosoguanidine were tested for their ability to inhibit rat liver DNA polymerase-alpha, -beta, and -gamma activity in vitro. DNA polymerase-alpha was the most sensitive, polymerase-beta was the most resistant, and polymerase-gamma exhibited an intermediate response. When the reactions were reassayed in the presence and absence of dithiothreitol, a thiol reducing agent, it was shown that the inhibition by carcinogens was generally reversible with increasing dithiothreitol, except that polymerase-beta recovered only 80-90% of control values. These and binding data suggest that DNA polymerase-beta, the putative repair enzyme, is highly resistant to carcinogen damage. This resistance may contribute to the retention of normal function and fidelity of the repair enzyme during carcinogen exposure in vivo and to a normal cellular repair.

Full text

PDF
985

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott P. J., Saffhill R. DNA-synthesis with methylated poly(dA-dT) templates: possible role of O4-methylthymine as a pro-mutagenic base. Nucleic Acids Res. 1977 Mar;4(3):761–769. doi: 10.1093/nar/4.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bollum F. J. Mammalian DNA polymerases. Prog Nucleic Acid Res Mol Biol. 1975;15(0):109–144. doi: 10.1016/s0079-6603(08)60118-x. [DOI] [PubMed] [Google Scholar]
  3. Brown W. E., Wold F. Alkyl isocyanates as active-site-specific reagents for serine proteases. Identification of the active-site serine as the site of reaction. Biochemistry. 1973 Feb 27;12(5):835–840. doi: 10.1021/bi00729a008. [DOI] [PubMed] [Google Scholar]
  4. Brun G., Chapeville F. Multiplicity of animal cell deoxyribonucleic acid polymerases. Biochem Soc Symp. 1977;(42):1–16. [PubMed] [Google Scholar]
  5. Chan J. Y., Becker F. F. Decreased fidelity of DNA polymerase activity during N-2-fluorenylacetamide hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1979 Feb;76(2):814–818. doi: 10.1073/pnas.76.2.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan J. Y., Rodriguez L. W., Becker F. F. Endogenous DNA polymerase activity in fractionated rat lever chromatin. Nucleic Acids Res. 1977 Aug;4(8):2683–2695. doi: 10.1093/nar/4.8.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan J. Y., Srivastava B. I. Antigenic relationships in calf thymus and human leukemic cell terminal deoxynucleotidyl transferase. Biochim Biophys Acta. 1976 Oct 18;447(3):353–359. doi: 10.1016/0005-2787(76)90058-7. [DOI] [PubMed] [Google Scholar]
  8. Cheng C. J., Fujimura S., Grunberger D., Weinstein I. B. Interaction of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (NSC 79037) with nucleic acids and proteins in vivo and in vitro. Cancer Res. 1972 Jan;32(1):22–27. [PubMed] [Google Scholar]
  9. Cox R. DNA methylase inhibition in vitro by N-methyl-N'-nitro-N-nitrosoguanidine. Cancer Res. 1980 Jan;40(1):61–63. [PubMed] [Google Scholar]
  10. Gronow M. Nuclear proteins and chemical carcinogenesis. Chem Biol Interact. 1980 Jan;29(1):1–30. doi: 10.1016/0009-2797(80)90083-6. [DOI] [PubMed] [Google Scholar]
  11. Grunberger D., Weinstein I. B. Biochemical effects of the modification of nucleic acids by certain polycyclic aromatic carcinogens. Prog Nucleic Acid Res Mol Biol. 1979;23:105–149. doi: 10.1016/s0079-6603(08)60132-4. [DOI] [PubMed] [Google Scholar]
  12. Guzzo G. J., Glazer R. I. Effects of N-acetoxy-2-acetylaminofluorene and N'-nitro-N-nitrosoguanidine on nuclear DNA synthesis in rat liver. Cancer Res. 1976 Mar;36(3):1041–1048. [PubMed] [Google Scholar]
  13. Harvan D. J., Hass J. R., Lieberman M. W. Adduct formation between the carcinogen N-acetoxy-2-acetylaminofluorene and synthetic polydeoxyribonucleotides. Chem Biol Interact. 1977 May;17(2):203–210. doi: 10.1016/0009-2797(77)90085-0. [DOI] [PubMed] [Google Scholar]
  14. Kaufmann W. K., Kaufman D. G., Grisham J. W. Unscheduled DNA synthesis in isolated hepatic nuclei after treatment of rats with methylnitrosourea in vivo. Biochem Biophys Res Commun. 1979 Nov 14;91(1):297–302. doi: 10.1016/0006-291x(79)90617-x. [DOI] [PubMed] [Google Scholar]
  15. Lieberman M. W. Approaches to the analysis of fidelity of DNA repair in mammalian cells. Int Rev Cytol. 1976;45:1–23. doi: 10.1016/s0074-7696(08)60076-5. [DOI] [PubMed] [Google Scholar]
  16. McCalla D. R., Reuvers A. Reaction of N-methyl-N'-nitro-N-nitrosoguanidine with protein: formation of nitroguanido derivatives. Can J Biochem. 1968 Nov;46(11):1410–1415. [PubMed] [Google Scholar]
  17. Pulkrabek P., Leffler S., Grunberger D., Weinstein I. B. Modification of deoxyribonucleic acid by a diol epoxide of benzo[a]pyrene. Relation to deoxyribonucleic acid structure and conformation and effects on transfectional activity. Biochemistry. 1979 Nov 13;18(23):5128–5134. doi: 10.1021/bi00590a016. [DOI] [PubMed] [Google Scholar]
  18. San R. H., Stich H. F. DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens. Int J Cancer. 1975 Aug 15;16(2):284–291. doi: 10.1002/ijc.2910160211. [DOI] [PubMed] [Google Scholar]
  19. Teebor G. W., Duker N. J., Becker F. F. Normal endonuclease activities for damaged DNA during hepatocarcinogenesis. Biochim Biophys Acta. 1977 Jul 15;477(2):125–131. doi: 10.1016/0005-2787(77)90228-3. [DOI] [PubMed] [Google Scholar]
  20. Twu J. S., Wold F. Butyl isocyanate, an active-site-specific reagent for yeast alcohol dehydrogenase. Biochemistry. 1973 Jan 30;12(3):381–386. doi: 10.1021/bi00727a003. [DOI] [PubMed] [Google Scholar]
  21. Weissbach A. Eukaryotic DNA polymerases. Annu Rev Biochem. 1977;46:25–47. doi: 10.1146/annurev.bi.46.070177.000325. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES