Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 1;193(3):1021–1024. doi: 10.1042/bj1931021

N.m.r. and e.p.r. characterization of [4-carboxy-2,6-dinitrophenyl-lysine]cytochromes c.

K E Falk, P A Jovall, J Angström
PMCID: PMC1162700  PMID: 6272714

Abstract

Monosubstituted [4-carboxy-2,6-dinitrophenyl-lysine]cytochromes c were investigated by n.m.r. and e.p.r. Modification of Lys-13 or Lys-72 in ferricytochrome c by 4-chloro-3,5-dinitrobenzoate yields either of two different conformers that are rapidly exchanging in the native form. The equilibrium involves small local changes in the conformation of Met-80 (the sixth ligand) and Phe-82, as a result of whether Lys-13 is the 'on' or 'off' position in the Lys-13--Glu-90 salt bridge.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson T., Angström J., Falk K. E., Forsén S. Perchlorate binding to cytochrome c: a magnetic and optical study. Eur J Biochem. 1980 Sep;110(2):363–369. doi: 10.1111/j.1432-1033.1980.tb04876.x. [DOI] [PubMed] [Google Scholar]
  2. Brautigan D. L., Feinberg B. A., Hoffman B. M., Margoliash E., Preisach J., Blumberg W. E. Multiple low spin forms of the cytochrome c ferrihemochrome. EPR spectra of various eukaryotic and prokaryotic cytochromes c. J Biol Chem. 1977 Jan 25;252(2):574–582. [PubMed] [Google Scholar]
  3. Brautigan D. L., Ferguson-Miller S., Margoliash E. Definition of cytochrome c binding domains by chemical modification. I. Reaction with 4-chloro-3,5-dinitrobenzoate and chromatographic separation of singly substituted derivatives. J Biol Chem. 1978 Jan 10;253(1):130–139. [PubMed] [Google Scholar]
  4. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  5. Ferguson-Miller S., Brautigan D. L., Margoliash E. Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem. 1978 Jan 10;253(1):149–159. [PubMed] [Google Scholar]
  6. Gupta R. K., Koenig S. H. Some aspects of pH and temperature dependence of the NMR spectra of cytochrome C. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1134–1143. doi: 10.1016/0006-291x(71)90137-9. [DOI] [PubMed] [Google Scholar]
  7. Keller R. M., Wüthrich K. Assignment of the heme c resonances in the 360 MHz H NMR spectra of cytochrome c. Biochim Biophys Acta. 1978 Mar 28;533(1):195–208. doi: 10.1016/0005-2795(78)90564-0. [DOI] [PubMed] [Google Scholar]
  8. Keller R. M., Wüthrich K. Evolutionary change of the heme c electronic structure: ferricytochrome c-551 from Pseudomonas aeruginosa and horse heart ferricytochrome c. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1132–1139. doi: 10.1016/0006-291x(78)91513-9. [DOI] [PubMed] [Google Scholar]
  9. König B. W., Osheroff N., Wilms J., Muijsers A. O., Dekker H. L., Margoliash E. Mapping of the interaction domain for purified cytochrome c1 on cytochrome c. FEBS Lett. 1980 Mar 10;111(2):395–398. doi: 10.1016/0014-5793(80)80835-0. [DOI] [PubMed] [Google Scholar]
  10. Morishima I., Ogawa S., Yonezawa T., Iizuka T. Nuclear magnetic resonance studies in hemoproteins. IX. pH dependent features of horse heart ferric cytochrome c. Biochim Biophys Acta. 1977 Dec 20;495(2):287–298. doi: 10.1016/0005-2795(77)90385-3. [DOI] [PubMed] [Google Scholar]
  11. Osheroff N., Borden D., Koppenol W. H., Margoliash E. Electrostatic interactions in cytochrome c. The role of interactions between residues 13 and 90 and residues 79 and 47 in stabilizing the heme crevice structure. J Biol Chem. 1980 Feb 25;255(4):1689–1697. [PubMed] [Google Scholar]
  12. Redfield A. G., Gupta R. K. Pulsed NMR study of the structure of cytochrome c. Cold Spring Harb Symp Quant Biol. 1972;36:405–411. doi: 10.1101/sqb.1972.036.01.052. [DOI] [PubMed] [Google Scholar]
  13. Senn H., Keller R. M., Wüthrich K. Different chirality of the axial methionine in homologous cytochromes c determined by 1H NMR and CD sectroscopy. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1362–1369. doi: 10.1016/0006-291x(80)90436-2. [DOI] [PubMed] [Google Scholar]
  14. Speck S. H., Ferguson-Miller S., Osheroff N., Margoliash E. Definition of cytochrome c binding domains by chemical modification: kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain. Proc Natl Acad Sci U S A. 1979 Jan;76(1):155–159. doi: 10.1073/pnas.76.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takano T., Trus B. L., Mandel N., Mandel G., Kallai O. B., Swanson R., Dickerson R. E. Tuna cytochrome c at 2.0 A resolution. II. Ferrocytochrome structure analysis. J Biol Chem. 1977 Jan 25;252(2):776–785. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES