Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jan 15;194(1):341–350. doi: 10.1042/bj1940341

The effect of all-trans-retinoic acid on the synthesis of epidermal cell-surface-associated carbohydrates

Ian A King 1, Anne Tabiowo 1
PMCID: PMC1162749  PMID: 7305988

Abstract

1. all-trans-Retinoic acid at concentrations greater than 10−7m stimulated the incorporation of d-[3H]glucosamine into 8m-urea/5% (w/v) sodium dodecyl sulphate extracts of 1m-CaCl2-separated epidermis from pig ear skin slices cultured for 18h. The incorporation of 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected. 2. Electrophoresis of the solubilized epidermis showed increased incorporation of d-[3H]glucosamine into a high-molecular-weight glycosaminoglycan-containing peak when skin slices were cultured in the presence of 10−5m-all-trans-retinoic acid. The labelling of other epidermal components with d-[3H]glucosamine, 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected by 10−5m-all-trans-retinoic acid. 3. Trypsinization dispersed the epidermal cells and released 75–85% of the total d-[3H]glucosamine-labelled material in the glycosaminoglycan peak. Thus most of this material was extracellular in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 4. Increased labelling of extracellular epidermal glycosaminoglycans was also observed when human skin slices were treated with all-trans-retinoic acid, indicating a similar mechanism in both tissues. Increased labelling was also found when the epidermis was cultured in the absence of the dermis, suggesting a direct effect of all-trans-retinoic acid on the epidermis. 5. Increased incorporation of d-[3H]-glucosamine into extracellular epidermal glycosaminoglycans in 10−5m-all-trans-retinoic acid-treated skin slices was apparent after 4–8h in culture and continued up to 48h. all-trans-Retinoic acid (10−5m) did not affect the rate of degradation of this material in cultures `chased' with 5mm-unlabelled glucosamine after 4 or 18h. 6. Cellulose acetate electrophoresis at pH7.2 revealed that hyaluronic acid was the major labelled glycosaminoglycan (80–90%) in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 7. The labelling of epidermal plasma membranes isolated from d-[3H]glucosamine-labelled skin slices by sucrose density gradient centrifugation was similar in control and 10−5m-all-trans-retinoic acid-treated tissue. 8. The results indicate that increased synthesis of mainly extracellular glycosaminoglycans (largely hyaluronic acid) may be the first response of the epidermis to excess all-trans-retinoic acid.

Full text

PDF
341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo S., De Luca L. M., Silverman-Jones C. S., Yuspa S. H. Mode of action of retinol. Involvement in glycosylation reactions of cultured mouse epidermal cells. J Biol Chem. 1979 May 10;254(9):3279–3287. [PubMed] [Google Scholar]
  2. Barnett M. L., Szabo G. Effect of vitamin A on epithelial morphogenesis in vitro. Exp Cell Res. 1973 Jan;76(1):118–126. doi: 10.1016/0014-4827(73)90426-6. [DOI] [PubMed] [Google Scholar]
  3. Beitch I. The induction of keratinization in the corneal epithelium. A comparison of the "dry" and vitamin A-deficient eyes. Invest Ophthalmol. 1970 Nov;9(11):827–843. [PubMed] [Google Scholar]
  4. Billingham R. E., Silvers W. K. Studies on the conservation of epidermal specificies of skin and certain mucosas in adult mammals. J Exp Med. 1967 Mar 1;125(3):429–446. doi: 10.1084/jem.125.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breen M., Weinstein H. G., Johnson R. L., Veis A., Marshall R. T. Acidic glycosaminoglycans in human skin during fetal development and adult life. Biochim Biophys Acta. 1970 Jan 27;201(1):54–60. doi: 10.1016/0304-4165(70)90009-7. [DOI] [PubMed] [Google Scholar]
  6. De Luca L. M. The direct involvement of vitamin A in glycosyl transfer reactions of mammalian membranes. Vitam Horm. 1977;35:1–57. doi: 10.1016/s0083-6729(08)60520-8. [DOI] [PubMed] [Google Scholar]
  7. DeLuca L., Yuspa S. H. Altered glycoprotein synthesis in mouse epidermal cells treated with retinyl acetate in vitro. Exp Cell Res. 1974 May;86(1):106–110. doi: 10.1016/0014-4827(74)90654-5. [DOI] [PubMed] [Google Scholar]
  8. Dion L. D., Blalock J. E., Gifford G. E. Vitamin A-induced density-dependent inhibition of L-cell proliferation. J Natl Cancer Inst. 1977 Mar;58(3):795–801. doi: 10.1093/jnci/58.3.795. [DOI] [PubMed] [Google Scholar]
  9. FELL H. B., MELLANBY E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol. 1953 Mar;119(4):470–488. doi: 10.1113/jphysiol.1953.sp004860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  11. Hicks R. M. Hyperplasia and cornification of the transitional epithelium in the vitamin A-deficient rat. Changes in fine structure of the cells. J Ultrastruct Res. 1968 Feb;22(3):206–230. doi: 10.1016/s0022-5320(68)90016-6. [DOI] [PubMed] [Google Scholar]
  12. Jetten A. M., Jetten M. E., Shapiro S. S., Poon J. P. Characterization of the action of retinoids on mouse fibroblast cell lines. Exp Cell Res. 1979 Mar 15;119(2):289–299. doi: 10.1016/0014-4827(79)90356-2. [DOI] [PubMed] [Google Scholar]
  13. Jetten A. M. Retinoids specifically enhance the number of epidermal growth factor receptors. Nature. 1980 Apr 17;284(5757):626–629. doi: 10.1038/284626a0. [DOI] [PubMed] [Google Scholar]
  14. King I. A., Tabiowo A. The dermis is required for the synthesis of extracellular glycosaminoglycans in cultured pig epidermis. Biochim Biophys Acta. 1980 Oct 1;632(2):234–243. doi: 10.1016/0304-4165(80)90081-1. [DOI] [PubMed] [Google Scholar]
  15. King I. A., Tabiowo A., Williams R. H. Incorporation of l-[3H]fucose and d-[3H]glucosamine into cell-surface-associated glycoconjugates in epidermis of cultured pig skin slices. Biochem J. 1980 Jul 15;190(1):65–77. doi: 10.1042/bj1900065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lazarus G. S., Hatcher V. B., Levine N. Lysosomes and the skin. J Invest Dermatol. 1975 Sep;65(3):259–271. doi: 10.1111/1523-1747.ep12598332. [DOI] [PubMed] [Google Scholar]
  18. Lotan R., Giotta G., Nork E., Nicolson G. L. Characterization of the inhibitory effects of retinoids on the in vitro growth of two malignant murine melanomas. J Natl Cancer Inst. 1978 May;60(5):1035–1041. doi: 10.1093/jnci/60.5.1035. [DOI] [PubMed] [Google Scholar]
  19. Lotan R., Nicolson G. L. Inhibitory effects of retinoic acid or retinyl acetate on the growth of untransformed, transformed, and tumor cells in vitro. J Natl Cancer Inst. 1977 Dec;59(6):1717–1722. doi: 10.1093/jnci/59.6.1717. [DOI] [PubMed] [Google Scholar]
  20. Marchok A. C., Cone V., Nettesheim P. Induction of squamous metaplasia (vitamin A deficiency) and hypersecretory activity in tracheal organ cultures. Lab Invest. 1975 Oct;33(4):451–460. [PubMed] [Google Scholar]
  21. Mier P. D., Wood M. The acid mucopolysaccharides of mammalian skin. Br J Dermatol. 1969 Jul;81(7):528–533. doi: 10.1111/j.1365-2133.1969.tb16028.x. [DOI] [PubMed] [Google Scholar]
  22. Patt L. M., Itaya K., Hakomori S. I. Retinol induces density-dependent growth inhibition and changes in glycolipids and LETS. Nature. 1978 Jun 1;273(5661):379–381. doi: 10.1038/273379a0. [DOI] [PubMed] [Google Scholar]
  23. Roels O. A., Anderson O. R., Lui N. S., Shah D. O., Trout M. E. Vitamin A and membranes. Am J Clin Nutr. 1969 Aug;22(8):1020–1032. doi: 10.1093/ajcn/22.8.1020. [DOI] [PubMed] [Google Scholar]
  24. Rosso G. C., De Luca L., Warren C. D., Wolf G. Enzymatic synthesis of mannosyl retinyl phosphate from retinyl phosphate and guanosine diphosphate mannose. J Lipid Res. 1975 May;16(3):235–243. [PubMed] [Google Scholar]
  25. Sani B. P., Donovan M. K. Localization of retinoic acid-binding protein in nuclei and the nuclear uptake of retinoic acid. Cancer Res. 1979 Jul;39(7 Pt 1):2492–2496. [PubMed] [Google Scholar]
  26. Sani B. P., Hill D. L. Retinoic acid: a binding protein in chick embryo metatarsal skin. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1276–1282. doi: 10.1016/s0006-291x(74)80422-5. [DOI] [PubMed] [Google Scholar]
  27. Shapiro S. S., Poon J. P. Effect of retinyl acetate on sulfated glycosaminoglycan biosynthesis in dermal and epidermal cells in vitro. Connect Tissue Res. 1978;6(2):101–108. doi: 10.3109/03008207809152618. [DOI] [PubMed] [Google Scholar]
  28. Shapiro S. S., Poon J. P. Retinoic acid-induced alterations of growth and morphology in an established epithelial line. Exp Cell Res. 1979 Mar 15;119(2):349–357. doi: 10.1016/0014-4827(79)90363-x. [DOI] [PubMed] [Google Scholar]
  29. Tsambaos D., Mahrle G., Orfanos C. E. Epidermal changes induced by oral excess of aromatic retinoid in guinea pigs. Arch Dermatol Res. 1980;267(2):141–152. doi: 10.1007/BF00569100. [DOI] [PubMed] [Google Scholar]
  30. Ugel A. R., Chrambach A., Rodbard D. Fractionation and characterization of an oligomeric series of bovine keratohyalin by polyacrylamide gel electrophoresis. Anal Biochem. 1971 Oct;43(2):410–426. doi: 10.1016/0003-2697(71)90271-5. [DOI] [PubMed] [Google Scholar]
  31. Wolf G., Kiorpes T. C., Masushige S., Schreiber J. B., Smith M. J., Anderson R. S. Recent evidence for the participation of vitamin A in glycoprotein synthesis. Fed Proc. 1979 Oct;38(11):2540–2543. [PubMed] [Google Scholar]
  32. Yuspa S. H., Harris C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp Cell Res. 1974 May;86(1):95–105. doi: 10.1016/0014-4827(74)90653-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES