Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Feb 15;194(2):599–606. doi: 10.1042/bj1940599

Oxidation-reduction properties of the cytochrome b found in the plasma-membrane fraction of human neutrophils. A possible oxidase in the respiratory burst.

A R Cross, O T Jones, A M Harper, A W Segal
PMCID: PMC1162784  PMID: 7306004

Abstract

The oxidation-reduction midpoint potential of the cytochrome b found in the plasma membrane of human neutrophils has been determined at pH 7.0 (Em,7.0) from measurements of absorption spectra at fixed potentials. In both unstimulated and phorbol myristate acetate-stimulated cells Em,7.0 was -245 mV. Changes in pH affected the Em of the cytochrome b, with a slope of approx. 25 mV/pH unit change. The Em,7.0 of the haem group(s) of the membrane-bound myeloperoxidase of human neutrophils was found to be +34 mV. The plasma membranes contained no detectable ubiquinone, and no iron-sulphur compounds were detected by e.p.r. spectroscopy at 5-20 K. No flavins were detected by e.p.r. spectroscopy. The cytochrome b-245 was not reduced by added NADH or NADPH. Dithionite-reduced cytochrome b-245 formed a complex with CO, supplied as a saturated solution, which was dissociated with 26 microseconds illumination from a xenon flash lamp, and the recombination with CO had a half-time of approx. 6 ms. Partly (80%) reduced cytochrome b-245 was oxidized by added air-saturated buffer with a half-time faster than 1 s at 20 degrees C, a resolution limited by mixing time. These results are compatible with cytochrome b-245 acting as an oxidase.

Full text

PDF
599

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M., Kipnes R. S. Superoxide-forming enzyme from human neutrophils: evidence for a flavin requirement. Blood. 1977 Sep;50(3):517–524. [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  3. Badwey J. A., Curnutte J. T., Karnovsky M. L. The enzyme of granulocytes that produces superoxide and peroxide. An elusive Pimpernel. N Engl J Med. 1979 May 17;300(20):1157–1160. doi: 10.1056/NEJM197905173002009. [DOI] [PubMed] [Google Scholar]
  4. Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borregaard N., Johansen K. S., Taudorff E., Wandall J. H. Cytochrome b is present in neutrophils from patients with chronic granulomatous disease. Lancet. 1979 May 5;1(8123):949–951. doi: 10.1016/s0140-6736(79)91722-7. [DOI] [PubMed] [Google Scholar]
  6. Dewald B., Baggiolini M., Curnutte J. T., Babior B. M. Subcellular localization of the superoxide-forming enzyme in human neutrophils. J Clin Invest. 1979 Jan;63(1):21–29. doi: 10.1172/JCI109273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  8. Gabig T. G., Babior B. M. The O2(-) -forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme. J Biol Chem. 1979 Sep 25;254(18):9070–9074. [PubMed] [Google Scholar]
  9. Gabig T. G., Kipnes R. S., Babior B. M. Solubilization of the O2(-)-forming activity responsible for the respiratory burst in human neutrophils. J Biol Chem. 1978 Oct 10;253(19):6663–6665. [PubMed] [Google Scholar]
  10. Green M. R., Hill H. A., Okolow-Zubkowska M. J., Segal A. W. The production of hydroxyl and superoxide radicals by stimulated human neutrophils- measurements by EPR spectroscopy. FEBS Lett. 1979 Apr 1;100(1):23–26. doi: 10.1016/0014-5793(79)81123-0. [DOI] [PubMed] [Google Scholar]
  11. Griffiths W. T., Threlfall D. R., Goodwin T. W. Nature, intracellular distribution and formation of terpenoid quinones in maize and barley shoots. Biochem J. 1967 May;103(2):589–600. doi: 10.1042/bj1030589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HARBURY H. A. Oxidation-reduction potentials of horseradish peroxidase. J Biol Chem. 1957 Apr;225(2):1009–1024. [PubMed] [Google Scholar]
  13. Harrison J. E., Schultz J. Myeloperoxidase: confirmation and nature of heme-binding inequivalence. Resolution of a carbonyl-substituted heme. Biochim Biophys Acta. 1978 Oct 23;536(2):341–349. doi: 10.1016/0005-2795(78)90492-0. [DOI] [PubMed] [Google Scholar]
  14. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jarasch E. D., Kartenbeck J., Bruder G., Fink A., Morré D. J., Franke W. W. B-type cytochromes in plasma membranes isolated from rat liver, in comparison with those of endomembranes. J Cell Biol. 1979 Jan;80(1):37–52. doi: 10.1083/jcb.80.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones O. T., Saunders V. A. Energy-linked electron transfer reactions in Rhodopseudomonas viridis. Biochim Biophys Acta. 1972 Sep 20;275(3):427–436. doi: 10.1016/0005-2728(72)90223-x. [DOI] [PubMed] [Google Scholar]
  17. Lindsay J. G., Dutton P. L., Wilson D. F. Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart. Biochemistry. 1972 May 9;11(10):1937–1942. doi: 10.1021/bi00760a031. [DOI] [PubMed] [Google Scholar]
  18. Pettigrew G. W., Bartsch R. G., Meyer T. E., Kamen M. D. Redox potentials of the photosynthetic bacterial cytochromes c2 and the structural bases for variability. Biochim Biophys Acta. 1978 Sep 7;503(3):509–523. doi: 10.1016/0005-2728(78)90150-0. [DOI] [PubMed] [Google Scholar]
  19. Romeo D., Zabucchi G., Miani N., Rossi F. Ion movement across leukocyte plasma membrane and excitation of their metabolism. Nature. 1975 Feb 13;253(5492):542–544. doi: 10.1038/253542a0. [DOI] [PubMed] [Google Scholar]
  20. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  21. STRAUB J. P., COLPA-BOONSTRA J. P. The effect of pH on the oxidation-reduction potential of cytochrome b in heart-muscle preparations. Biochim Biophys Acta. 1962 Jul 16;60:650–652. doi: 10.1016/0006-3002(62)90887-9. [DOI] [PubMed] [Google Scholar]
  22. Segal A. W., Coade S. B. Kinetics of oxygen consumption by phagocytosing human neutrophils. Biochem Biophys Res Commun. 1978 Oct 16;84(3):611–617. doi: 10.1016/0006-291x(78)90749-0. [DOI] [PubMed] [Google Scholar]
  23. Segal A. W., Dorling J., Coade S. Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes. Biochemical and morphological studies. J Cell Biol. 1980 Apr;85(1):42–59. doi: 10.1083/jcb.85.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Segal A. W., Jones O. T. Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett. 1980 Jan 28;110(1):111–114. doi: 10.1016/0014-5793(80)80035-4. [DOI] [PubMed] [Google Scholar]
  25. Segal A. W., Jones O. T. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature. 1978 Nov 30;276(5687):515–517. doi: 10.1038/276515a0. [DOI] [PubMed] [Google Scholar]
  26. Segal A. W., Jones O. T. Reduction and subsequent oxidation of a cytochrome b of human neutrophils after stimulation with phorbol myristate acetate. Biochem Biophys Res Commun. 1979 May 14;88(1):130–134. doi: 10.1016/0006-291x(79)91706-6. [DOI] [PubMed] [Google Scholar]
  27. Segal A. W., Jones O. T. The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils. Biochem J. 1979 Jul 15;182(1):181–188. doi: 10.1042/bj1820181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Segal A. W., Jones O. T., Webster D., Allison A. C. Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet. 1978 Aug 26;2(8087):446–449. doi: 10.1016/s0140-6736(78)91445-9. [DOI] [PubMed] [Google Scholar]
  29. Strittmatter C. F., Ball E. G. A Hemochromogen Component of Liver Microsomes. Proc Natl Acad Sci U S A. 1952 Jan;38(1):19–25. doi: 10.1073/pnas.38.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tauber A. I., Goetzl E. J. Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution, and partial characterization. Biochemistry. 1979 Dec 11;18(25):5576–5584. doi: 10.1021/bi00592a009. [DOI] [PubMed] [Google Scholar]
  31. Wikström M. K. Properties of three cytochrome b-like species in mitochondria and submitochondrial particles. Biochim Biophys Acta. 1971 Dec 7;253(2):332–345. doi: 10.1016/0005-2728(71)90037-5. [DOI] [PubMed] [Google Scholar]
  32. Wilson D. F., Dutton P. L. Energy dependent changes in the oxidation-reduction potential of cytochrome b. Biochem Biophys Res Commun. 1970 Apr 8;39(1):59–64. doi: 10.1016/0006-291x(70)90757-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES