Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 15;194(3):673–678. doi: 10.1042/bj1940673

Relative synthesis of cardiac contractile proteins. Evidence for synthesis from the same precursor pool.

C D Evans, S S Schreiber, M Oratz, M A Rothschild
PMCID: PMC1162800  PMID: 7306015

Abstract

The relative molar synthesis of cardiac contractile proteins has been measured in the perfused heart under control haemodynamic conditions. This synthesis, of myosin heavy chains, individual light chains (1 and 2), actin and tropomyosin, was determined from isolated guinea-pig hearts perfused for 3h simultaneously with constant specific radioactivities and concentrations of [3H]lysine and [3H]phenylalanine.The data strongly suggest that all of the proteins studied were synthesized from the same precursor pools of lysine and phenylalanine, since the ratio of the specific activities of the two labels was the same in all of the proteins. Measurement of molar synthesis of each contractile protein was the same with either labelled amino acid. Under control haemodynamic-perfusion conditions, the relative molar synthesis of the contractile proteins was actin greater than heavy chains greater than light chain 2 greater than light chain 1 greater than tropomyosin.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias I. M., Doyle D., Schimke R. T. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J Biol Chem. 1969 Jun 25;244(12):3303–3315. [PubMed] [Google Scholar]
  2. CARSTEN M. E., KATZ A. M. ACTIN: A COMPARATIVE STUDY. Biochim Biophys Acta. 1964 Sep 4;90:534–541. doi: 10.1016/0304-4165(64)90232-6. [DOI] [PubMed] [Google Scholar]
  3. Cummins P., Perry S. V. Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle. Biochem J. 1974 Jul;141(1):43–49. doi: 10.1042/bj1410043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans C., Schreiber S. S., Oratz M., Rothschild M. A. Synthesis of myosin heavy and light chains in the afterloaded guinea pig right ventricle. Cardiovasc Res. 1978 Dec;12(12):731–743. doi: 10.1093/cvr/12.12.731. [DOI] [PubMed] [Google Scholar]
  5. Everett A. W., Sparrow M. P., Taylor R. R. Early changes in myocardial protein synthesis in vivo in response to right ventricular pressure overload in the dog. J Mol Cell Cardiol. 1979 Dec;11(12):1253–1263. doi: 10.1016/0022-2828(79)90005-1. [DOI] [PubMed] [Google Scholar]
  6. Fenner C., Valentine R., Mason D. T., Wikman-Coffelt J. Purification and characterization of cardiac tropomyosins. Prep Biochem. 1975;5(3):189–197. doi: 10.1080/00327487508061571. [DOI] [PubMed] [Google Scholar]
  7. Fern E. B., Garlick P. J. Compartmentation of albumin and ferritin synthesis in rat liver in vivo. Biochem J. 1976 Apr 15;156(1):189–192. doi: 10.1042/bj1560189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frederiksen D. W., Hoffnung J. M., Frederiksen R. T., Williams R. B. The structural proteins of normal and diseased human myocardium. Circ Res. 1978 Apr;42(4):459–466. doi: 10.1161/01.res.42.4.459. [DOI] [PubMed] [Google Scholar]
  9. GUDBJARNASON S., TELERMAN M., BING R. J. PROTEIN METABOLISM IN CARDIAC HYPERTROPHY AND HEART FAILURE. Am J Physiol. 1964 Feb;206:294–298. doi: 10.1152/ajplegacy.1964.206.2.294. [DOI] [PubMed] [Google Scholar]
  10. Harding G. K., Buckwold F. J., Marrie T. J., Thompson L., Light R. B., Ronald A. R. Prophylaxis of recurrent urinary tract infection in female patients. Efficacy of low-dose, thrice-weekly therapy with trimethoprim-sulfamethoxazole. JAMA. 1979 Nov 2;242(18):1975–1977. [PubMed] [Google Scholar]
  11. Hider R. C., Fern E. B., London D. R. Identification in skeletal muscle of a distinct extracellular pool of amino acids, and its role in protein synthesis. Biochem J. 1971 Mar;121(5):817–827. doi: 10.1042/bj1210817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hjalmarson A., Isaksson O. In vitro work load and rat heart metabolism. I. Effect on protein synthesis. Acta Physiol Scand. 1972 Sep;86(1):126–144. doi: 10.1111/j.1748-1716.1972.tb00231.x. [DOI] [PubMed] [Google Scholar]
  13. Hoh J. F., Egerton L. J. Action of triiodothyronine on the synthesis of rat ventricular myosin isoenzymes. FEBS Lett. 1979 May 1;101(1):143–148. doi: 10.1016/0014-5793(79)81313-7. [DOI] [PubMed] [Google Scholar]
  14. Hutzler J., Odievre M., Dancis J. Analysis for lysine, arginine, histidine, and tyrosine in biological fluids. Anal Biochem. 1967 Jun;19(3):529–541. doi: 10.1016/0003-2697(67)90243-6. [DOI] [PubMed] [Google Scholar]
  15. Ilan J., Singer M. Sampling of the leucine pool from the growing peptide chain: difference in leucine specific activity of peptidyl-transfer RNA from free and membrane-bound polysomes. J Mol Biol. 1975 Jan 5;91(1):39–51. doi: 10.1016/0022-2836(75)90370-8. [DOI] [PubMed] [Google Scholar]
  16. KATZ A. M., CARSTEN M. E. ACTIN FROM HEART MUSCLE: STUDIES ON AMINO ACID COMPOSITION. Circ Res. 1963 Nov;13:474–477. doi: 10.1161/01.res.13.5.474. [DOI] [PubMed] [Google Scholar]
  17. Katz A. M. Contractile proteins of the heart. Physiol Rev. 1970 Jan;50(1):63–158. doi: 10.1152/physrev.1970.50.1.63. [DOI] [PubMed] [Google Scholar]
  18. LaGrange B. M., Low R. B. Turnover of myosin heavy and light chains in cultured embryonic chick cardiac and skeletal muscle. Dev Biol. 1976 Dec;54(2):214–229. doi: 10.1016/0012-1606(76)90300-6. [DOI] [PubMed] [Google Scholar]
  19. Lompre A. M., Schwartz K., d'Albis A., Lacombe G., Van Thiem N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979 Nov 1;282(5734):105–107. doi: 10.1038/282105a0. [DOI] [PubMed] [Google Scholar]
  20. McKee E. E., Cheung J. Y., Rannels D. E., Morgan H. E. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem. 1978 Feb 25;253(4):1030–1040. [PubMed] [Google Scholar]
  21. Morkin E. Stimulation of cardiac myosin adenosine triphosphatase in thyrotoxicosis. Circ Res. 1979 Jan;44(1):1–7. doi: 10.1161/01.res.44.1.1. [DOI] [PubMed] [Google Scholar]
  22. Raszkowski R. R., Welty J. D., Peterson M. B. The amino acid composition of actin and myosin and Ca2+-activated myosin adenosine triphosphatase in chronic canine congestive heart failure. Circ Res. 1977 Feb;40(2):191–198. doi: 10.1161/01.res.40.2.191. [DOI] [PubMed] [Google Scholar]
  23. Reddy Y. S., Honig C. R. Ca 2+ -binding and Ca 2+ -sensitizing functions of cardiac native tropomyosin, troponin, and tropomyosin. Biochim Biophys Acta. 1972 Sep 20;275(3):453–463. doi: 10.1016/0005-2728(72)90226-5. [DOI] [PubMed] [Google Scholar]
  24. Sanford C. F., Griffin E. E., Wildenthal K. Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res. 1978 Nov;43(5):688–694. doi: 10.1161/01.res.43.5.688. [DOI] [PubMed] [Google Scholar]
  25. Schreiber S. S., Hearse D. J., Oratz M., Rothschild M. A. Protein synthesis in prolonged cardiac arrest. J Mol Cell Cardiol. 1977 Feb;9(2):87–100. doi: 10.1016/0022-2828(77)90042-6. [DOI] [PubMed] [Google Scholar]
  26. Schreiber S. S., Oratz M., Evans C., Reff F., Klein I., Rothschild M. A. Cardiac protein degradation in acute overload in vitro: reutilization of amino acids. Am J Physiol. 1973 Feb;224(2):338–345. doi: 10.1152/ajplegacy.1973.224.2.338. [DOI] [PubMed] [Google Scholar]
  27. Schreiber S. S., Oratz M., Rothschild M. A. Protein synthesis in the overloaded mammalian heart. Am J Physiol. 1966 Aug;211(2):314–318. doi: 10.1152/ajplegacy.1966.211.2.314. [DOI] [PubMed] [Google Scholar]
  28. Schreiber S. S., Rothschild M. A., Evans C., Reff F., Oratz M. The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary perfusion. J Clin Invest. 1975 Jan;55(1):1–11. doi: 10.1172/JCI107899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sender P. M., Garlick P. J. Synthesis rates of protein in the Langendorff-perfused rat heart in the presence and absence of insulin, and in the working heart. Biochem J. 1973 Mar;132(3):603–608. doi: 10.1042/bj1320603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sender P. M. Muscle fibrils: Solubilization and gel electrophoresis. FEBS Lett. 1971 Sep 15;17(1):106–110. doi: 10.1016/0014-5793(71)80575-6. [DOI] [PubMed] [Google Scholar]
  31. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  32. Tsukui R., Ebashi S. Cardiac troponin. J Biochem. 1973 May;73(5):1119–1121. doi: 10.1093/oxfordjournals.jbchem.a130168. [DOI] [PubMed] [Google Scholar]
  33. Vidrich A., Airhart J., Bruno M. K., Khairallah E. A. Compartmentation of free amino acids for protein biosynthesis. Influence of diurnal changes in hepatic amino acid concentrations of the composition of the precursor pool charging aminoacyl-transfer ribonucleic acid. Biochem J. 1977 Feb 15;162(2):257–266. doi: 10.1042/bj1620257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wikman-Coffelt J., Zelis R., Fenner C., Mason D. T. Comparative purification of myocardial myosin and antigenic specificity of the two light chains. Prep Biochem. 1973;3(5):439–449. doi: 10.1080/00327487308061528. [DOI] [PubMed] [Google Scholar]
  35. Wikman-Coffelt J., Zelis R., Fenner C., Mason D. T. Myosin chains of myocardial tissue. I. Purification and immunological properties of myosin heavy chains. Biochem Biophys Res Commun. 1973 Apr 16;51(4):1097–1104. doi: 10.1016/0006-291x(73)90040-5. [DOI] [PubMed] [Google Scholar]
  36. Zak R., Martin A. F., Prior G., Rabinowitz M. Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method. J Biol Chem. 1977 May 25;252(10):3430–3435. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES