Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 15;194(3):983–988. doi: 10.1042/bj1940983

Vitamin K-dependent carboxylation and vitamin K epoxidation. Evidence that the warfarin-sensitive microsomal NAD(P)H dehydrogenase reduces vitamin K1 in these reactions.

R Wallin, J W Suttie
PMCID: PMC1162836  PMID: 7306037

Abstract

Passage of a Triton X-100-solubilized microsomal systems in vitro that are used to study these reactions is the warfarin-sensitive NAD(P)H dehydrogenase.

Full text

PDF
983

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlisle T. L., Suttie J. W. Vitamin K dependent carboxylase: subcellular location of the carboxylase and enzymes involved in vitamin K metabolism in rat liver. Biochemistry. 1980 Mar 18;19(6):1161–1167. doi: 10.1021/bi00547a019. [DOI] [PubMed] [Google Scholar]
  2. Comai K., Gaylor J. L. Existence and separation of three forms of cytochrome P-450 from rat liver microsomes. J Biol Chem. 1973 Jul 25;248(14):4947–4955. [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Esmon C. T., Suttie J. W. Vitamin K-dependent carboxylase. Solubilization and properties. J Biol Chem. 1976 Oct 25;251(20):6238–6243. [PubMed] [Google Scholar]
  5. Friedman P. A., Smith M. W. Epoxidation of several vitamins K by rat liver microsomes. Biochem Pharmacol. 1979 Mar 15;28(6):937–938. doi: 10.1016/0006-2952(79)90379-4. [DOI] [PubMed] [Google Scholar]
  6. Koli A. K., Yearby C., Scott W., Donaldson K. O. Purification and properties of three separate menadione reductases from hog liver. J Biol Chem. 1969 Feb 25;244(4):621–629. [PubMed] [Google Scholar]
  7. MAMEESH M. S., JOHNSON B. C. Production of dietary vit. K deficiency in the rat. Proc Soc Exp Biol Med. 1959 Jul;101(3):467–468. doi: 10.3181/00379727-101-24982. [DOI] [PubMed] [Google Scholar]
  8. Martius C., Ganser R., Viviani A. The enzymatic reduction of K-vitamins incorporated in the membrane of liposomes. FEBS Lett. 1975 Nov 1;59(1):13–14. doi: 10.1016/0014-5793(75)80329-2. [DOI] [PubMed] [Google Scholar]
  9. Matschiner J. T., Taggart W. V., Amelotti J. M. The vitamin K content of beef liver. Detection of a new form of vitamin K. Biochemistry. 1967 May;6(5):1243–1248. doi: 10.1021/bi00857a004. [DOI] [PubMed] [Google Scholar]
  10. Mihara K., Sato R. Detergent-solubilized NADH-cytochrome b5 reductase. Methods Enzymol. 1978;52:102–108. doi: 10.1016/s0076-6879(78)52011-9. [DOI] [PubMed] [Google Scholar]
  11. Olson R. E., Suttie J. W. Vitamin K and gamma-carboxyglutamate biosynthesis. Vitam Horm. 1977;35:59–108. doi: 10.1016/s0083-6729(08)60521-x. [DOI] [PubMed] [Google Scholar]
  12. Raftell M., Blomberg K. Immunochemical studies on two DT diaphorase active antigens isolated from rat liver cytosol by affinity chromatography. Arch Biochem Biophys. 1980 Jan;199(1):165–171. doi: 10.1016/0003-9861(80)90269-6. [DOI] [PubMed] [Google Scholar]
  13. Strobel H. W., Dignam J. D. Purification and properties of NADPH-cytochrome P-450 reductase. Methods Enzymol. 1978;52:89–96. doi: 10.1016/s0076-6879(78)52009-0. [DOI] [PubMed] [Google Scholar]
  14. Suttie J. W., Geweke L. O., Martin S. L., Willingham A. K. Vitamin K epoxidase: dependence of epoxidase activity on substrates of the vitamin K-dependent carboxylation reaction. FEBS Lett. 1980 Jan 14;109(2):267–270. doi: 10.1016/0014-5793(80)81102-1. [DOI] [PubMed] [Google Scholar]
  15. Suttie J. W., Hageman J. M. Vitamin K-dependent carboxylase. Development of a peptide substrate. J Biol Chem. 1976 Sep 25;251(18):5827–5830. [PubMed] [Google Scholar]
  16. Suttie J. W., Jackson C. M. Prothrombin structure, activation, and biosynthesis. Physiol Rev. 1977 Jan;57(1):1–70. doi: 10.1152/physrev.1977.57.1.1. [DOI] [PubMed] [Google Scholar]
  17. Suttie J. W., Larson A. E., Canfield L. M., Carlisle T. L. Relationship between vitamin K-dependent carboxylation and vitamin K epoxidation. Fed Proc. 1978 Oct;37(12):2605–2609. [PubMed] [Google Scholar]
  18. Suttie J. W., Lehrman S. R., Geweke L. O., Hageman J. M., Rich D. H. Vitamin K-dependent carboxylase: requirements for carboxylation of soluble peptide and substrate specificity. Biochem Biophys Res Commun. 1979 Feb 14;86(3):500–507. doi: 10.1016/0006-291x(79)91742-x. [DOI] [PubMed] [Google Scholar]
  19. Suttie J. W. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem. 1980;8(2):191–223. doi: 10.3109/10409238009105469. [DOI] [PubMed] [Google Scholar]
  20. WEBER M. M., BRODIE A. F., MERSELIS J. E. Possible role for vitamin K in electron transport. Science. 1958 Oct 17;128(3329):896–898. doi: 10.1126/science.128.3329.896-a. [DOI] [PubMed] [Google Scholar]
  21. Wallin R., Gebhardt O., Prydz H. NAD(P)H dehydrogenase and its role in the vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone)-dependent carboxylation reaction. Biochem J. 1978 Jan 1;169(1):95–101. doi: 10.1042/bj1690095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wallin R. Some molecular properties of NAD(P)H dehydrogenase from rat liver. Biochem J. 1979 Jul 1;181(1):127–135. doi: 10.1042/bj1810127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wallin R., Suttie J. W. Vitamin K-dependent carboxylase: possible artifact of analysis due to a pyridine nucleotide-dependent carboxylation. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1374–1380. doi: 10.1016/0006-291x(80)90571-9. [DOI] [PubMed] [Google Scholar]
  24. Whitlon D. S., Sadowski J. A., Suttie J. W. Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry. 1978 Apr 18;17(8):1371–1377. doi: 10.1021/bi00601a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES