Skip to main content
Journal of the American Medical Informatics Association : JAMIA logoLink to Journal of the American Medical Informatics Association : JAMIA
. 1996 Jan-Feb;3(1):66–78. doi: 10.1136/jamia.1996.96342650

Portability issues for a structured clinical vocabulary: mapping from Yale to the Columbia medical entities dictionary.

J L Kannry 1, L Wright 1, M Shifman 1, S Silverstein 1, P L Miller 1
PMCID: PMC116288  PMID: 8750391

Abstract

OBJECTIVE: To examine the issues involved in mapping an existing structured controlled vocabulary, the Medical Entities Dictionary (MED) developed at Columbia University, to an institutional vocabulary, the laboratory and pharmacy vocabularies of the Yale New Haven Medical Center. DESIGN: 200 Yale pharmacy terms and 200 Yale laboratory terms were randomly selected from database files containing all of the Yale laboratory and pharmacy terms. These 400 terms were then mapped to the MED in three phases: mapping terms, mapping relationships between terms, and mapping attributes that modify terms. RESULTS: 73% of the Yale pharmacy terms mapped to MED terms. 49% of the Yale laboratory terms mapped to MED terms. After certain obsolete and otherwise inappropriate laboratory terms were eliminated, the latter rate improved to 59%. 23% of the unmatched Yale laboratory terms failed to match because of differences in granularity with MED terms. The Yale and MED pharmacy terms share 12 of 30 distinct attributes. The Yale and MED laboratory terms share 14 of 23 distinct attributes. CONCLUSION: The mapping of an institutional vocabulary to a structured controlled vocabulary requires that the mapping be performed at the level of terms, relationships, and attributes. The mapping process revealed the importance of standardization of local vocabulary subsets, standardization of attribute representation, and term granularity.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cimino J. J., Barnett G. O. Automated translation between medical terminologies using semantic definitions. MD Comput. 1990 Mar-Apr;7(2):104–109. [PubMed] [Google Scholar]
  2. Cimino J. J., Clayton P. D., Hripcsak G., Johnson S. B. Knowledge-based approaches to the maintenance of a large controlled medical terminology. J Am Med Inform Assoc. 1994 Jan-Feb;1(1):35–50. doi: 10.1136/jamia.1994.95236135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans D. A., Cimino J. J., Hersh W. R., Huff S. M., Bell D. S. Toward a medical-concept representation language. The Canon Group. J Am Med Inform Assoc. 1994 May-Jun;1(3):207–217. doi: 10.1136/jamia.1994.95236153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans D. A., Rothwell D. J., Monarch I. A., Lefferts R. G., Cote R. A. Toward representations for medical concepts. Med Decis Making. 1991 Oct-Dec;11(4 Suppl):S102–S108. [PubMed] [Google Scholar]
  5. Masarie F. E., Jr, Miller R. A., Bouhaddou O., Giuse N. B., Warner H. R. An interlingua for electronic interchange of medical information: using frames to map between clinical vocabularies. Comput Biomed Res. 1991 Aug;24(4):379–400. doi: 10.1016/0010-4809(91)90035-u. [DOI] [PubMed] [Google Scholar]
  6. Rocha R. A., Rocha B. H., Huff S. M. Automated translation between medical vocabularies using a frame-based interlingua. Proc Annu Symp Comput Appl Med Care. 1993:690–694. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of the American Medical Informatics Association are provided here courtesy of Oxford University Press

RESOURCES