Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 May 1;195(2):441–452. doi: 10.1042/bj1950441

The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes.

E Tipping, B Ketterer
PMCID: PMC1162908  PMID: 7316961

Abstract

A theory is presented that deals with the involvement of the intracellular binding proteins ligandin and aminoazodye-binding protein A (otherwise known as Z-protein or fatty-acid-binding protein) on the uptake and intracellular transport and metabolism of their ligands. Equations are derived that combine steady-state diffusional fluxes of small molecules that are (a) free in the aqueous phase of the cell, (b) bound to the two proteins and (c) partitioned into intracellular membranes, for model systems that resemble conditions in the rat hepatocyte. These equations are then combined with expressions for the enzyme-catalysed metabolic reactions undergone by these small molecules to assess the influence of diffusion rats on the overall metabolic rates. It is concluded that ligandin and protein A can enhance the rate of intracellular of their ligands by an order of magnitude or more and that this could make the hepatocyte several times more efficient in metabolizing these ligands. Various ways of testing this theory are discussed.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accatino L., Simon F. R. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest. 1976 Feb;57(2):496–508. doi: 10.1172/JCI108302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anwer M. S., Kroker R., Hegner D. Effect of albumin on bile acid uptake by isolated rat hepatocytes. Is there a common bile acid carrier? Biochem Biophys Res Commun. 1976 Nov 8;73(1):63–71. doi: 10.1016/0006-291x(76)90497-6. [DOI] [PubMed] [Google Scholar]
  3. Blouin A., Bolender R. P., Weibel E. R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977 Feb;72(2):441–455. doi: 10.1083/jcb.72.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COLLINS R. E. Transport of gases through hemoglobin solution. Science. 1961 May 19;133(3464):1593–1594. doi: 10.1126/science.133.3464.1593. [DOI] [PubMed] [Google Scholar]
  5. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973 Jan 30;12(3):521–528. doi: 10.1021/bi00727a026. [DOI] [PubMed] [Google Scholar]
  6. Cumps J., Razzouk C., Roberfroid M. B. Michaelis--Menten kinetic analysis of the hepatic microsomal benzpyrene hydroxylase from control, phenobarbital- and methyl-3-cholanthrene-treated rats. Chem Biol Interact. 1977 Jan;16(1):23–38. doi: 10.1016/0009-2797(77)90151-x. [DOI] [PubMed] [Google Scholar]
  7. Depierre J. W., Dallner G. Structural aspects of the membrane of the endoplasmic reticulum. Biochim Biophys Acta. 1975 Dec 29;415(4):411–472. doi: 10.1016/0304-4157(75)90006-4. [DOI] [PubMed] [Google Scholar]
  8. Devaux P., McConnell H. M. Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J Am Chem Soc. 1972 Jun 28;94(13):4475–4481. doi: 10.1021/ja00768a600. [DOI] [PubMed] [Google Scholar]
  9. Dolly J. O., Dodgson K. S., Rose F. A. Studies on the oestrogen sulphatase and arylsulphatase C activities of rat liver. Biochem J. 1972 Jun;128(2):337–345. doi: 10.1042/bj1280337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EIGEN M., HAMMES G. G. ELEMENTARY STEPS IN ENZYME REACTIONS (AS STUDIED BY RELAXATION SPECTROMETRY). Adv Enzymol Relat Areas Mol Biol. 1963;25:1–38. doi: 10.1002/9780470122709.ch1. [DOI] [PubMed] [Google Scholar]
  11. Edidin M. Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng. 1974;3(0):179–201. doi: 10.1146/annurev.bb.03.060174.001143. [DOI] [PubMed] [Google Scholar]
  12. Galla H. J., Sackmann E. Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochim Biophys Acta. 1974 Feb 26;339(1):103–115. doi: 10.1016/0005-2736(74)90336-8. [DOI] [PubMed] [Google Scholar]
  13. Gillette J. R. Overview of drug-protein binding. Ann N Y Acad Sci. 1973 Nov 26;226:6–17. doi: 10.1111/j.1749-6632.1973.tb20464.x. [DOI] [PubMed] [Google Scholar]
  14. Hori R., Kagimoto Y., Kamiya K., Inui K. I. Effects of free fatty acids as membrane components on permeability of drugs across bilayer lipid membranes: a mechanism for intestinal absorption of acidic drugs. Biochim Biophys Acta. 1978 Jun 2;509(3):510–518. doi: 10.1016/0005-2736(78)90244-4. [DOI] [PubMed] [Google Scholar]
  15. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  16. Kamisaka K., Listowsky I., Gatmaitan Z., Arias I. M. Circular dichroism analysis of the secondary structure of Z protein and its complexes with bilirubin and other organic anions. Biochim Biophys Acta. 1975 May 30;393(1):24–30. doi: 10.1016/0005-2795(75)90212-3. [DOI] [PubMed] [Google Scholar]
  17. Kamisaka K., Listowsky I., Gatmaitan Z., Arias I. M. Interactions of bilirubin and other ligands with ligandin. Biochemistry. 1975 May 20;14(10):2175–2180. doi: 10.1021/bi00681a021. [DOI] [PubMed] [Google Scholar]
  18. Ketley J. N., Habig W. H., Jakoby W. B. Binding of nonsubstrate ligands to the glutathione S-transferases. J Biol Chem. 1975 Nov 25;250(22):8670–8673. [PubMed] [Google Scholar]
  19. Ketterer B., Ross-Mansell P., Whitehead J. K. The isolation of carcinogen-binding protein from livers of rats given 4-dimethylaminoazobenzene. Biochem J. 1967 May;103(2):316–324. doi: 10.1042/bj1030316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ketterer B., Tipping E., Hackney J. F., Beale D. A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties. Biochem J. 1976 Jun 1;155(3):511–521. doi: 10.1042/bj1550511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ketterer B., Tipping E., Meuwissen J., Beale D. Ligandin. Biochem Soc Trans. 1975;3(5):626–630. doi: 10.1042/bst0030626. [DOI] [PubMed] [Google Scholar]
  22. Le Blanc O. H., Jr Tetraphenylborate conductance through lipid bilayer membranes. Biochim Biophys Acta. 1969;193(2):350–360. doi: 10.1016/0005-2736(69)90195-3. [DOI] [PubMed] [Google Scholar]
  23. Levi A. J., Gatmaitan Z., Arias I. M. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest. 1969 Nov;48(11):2156–2167. doi: 10.1172/JCI106182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Litwack G., Ketterer B., Arias I. M. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature. 1971 Dec 24;234(5330):466–467. doi: 10.1038/234466a0. [DOI] [PubMed] [Google Scholar]
  25. Meuwissen J. A., Ketterer B., Heirwegh K. P., de Groote J. Ligandin. Tijdschr Gastroenterol. 1975;18(1):7–20. [PubMed] [Google Scholar]
  26. Miller E. C. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. Cancer Res. 1978 Jun;38(6):1479–1496. [PubMed] [Google Scholar]
  27. Mishkin S., Stein L., Gatmaitan Z., Arias I. M. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem Biophys Res Commun. 1972 Jun 9;47(5):997–1003. doi: 10.1016/0006-291x(72)90931-x. [DOI] [PubMed] [Google Scholar]
  28. Ockner R. K., Manning J. A., Poppenhausen R. B., Ho W. K. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science. 1972 Jul 7;177(4043):56–58. doi: 10.1126/science.177.4043.56. [DOI] [PubMed] [Google Scholar]
  29. Okishio T., Nair P. P. Studies on bile acids. Some observations on the intracellular localization of major bile acids in rat liver. Biochemistry. 1966 Nov;5(11):3662–3668. doi: 10.1021/bi00875a040. [DOI] [PubMed] [Google Scholar]
  30. Parry G., Palmer D. N., Williams D. J. Ligand partitioning into membranes: its significance in determining Km and Ks values for cytochrome P-450 and other membrane bound receptors and enzymes. FEBS Lett. 1976 Aug 15;67(2):123–129. doi: 10.1016/0014-5793(76)80348-1. [DOI] [PubMed] [Google Scholar]
  31. Rao M. L., Rao G. S., Breuer H. Uptake of estrone, estradiol-17beta and testosterone by isolated rat liver cells. Biochem Biophys Res Commun. 1977 Jul 25;77(2):566–573. doi: 10.1016/s0006-291x(77)80016-8. [DOI] [PubMed] [Google Scholar]
  32. Sackmann E., Träuble H. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. J Am Chem Soc. 1972 Jun 28;94(13):4482–4491. doi: 10.1021/ja00768a013. [DOI] [PubMed] [Google Scholar]
  33. Sackmann E., Träuble H. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. II. Analysis of electron spin resonance spectra of steroid labels incorporated into lipid membranes. J Am Chem Soc. 1972 Jun 28;94(13):4492–4498. doi: 10.1021/ja00768a014. [DOI] [PubMed] [Google Scholar]
  34. Scharschmidt B. F., Waggoner J. G., Berk P. D. Hepatic organic anion uptake in the rat. J Clin Invest. 1975 Nov;56(5):1280–1292. doi: 10.1172/JCI108204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwarz L. R., Burr R., Schwenk M., Pfaff E., Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem. 1975 Jul 15;55(3):617–623. doi: 10.1111/j.1432-1033.1975.tb02199.x. [DOI] [PubMed] [Google Scholar]
  36. Tipping E., Ketterer B., Christodoulides L., Enderby G. Spectroscopic studies of the binding of bilirubin by ligandin and aminoazo-dye-binding protein A. Biochem J. 1976 Jul 1;157(1):211–216. doi: 10.1042/bj1570211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tipping E., Ketterer B., Christodoulides L., Enderby G. The interactions of haem with ligandin and aminoazo-dye-binding protein A. Biochem J. 1976 Aug 1;157(2):461–467. doi: 10.1042/bj1570461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tipping E., Ketterer B., Christodoulides L., Enderby G. The non-convalent binding of small molecules by ligandin. Interactions with steroids and their conjugates, fatty acids, bromosulphophthalein carcinogens, glutathione and realted compounds. Eur J Biochem. 1976 Aug 16;67(2):583–590. doi: 10.1111/j.1432-1033.1976.tb10724.x. [DOI] [PubMed] [Google Scholar]
  39. Tipping E., Ketterer B., Christodoulides L. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some organic anions (bromosulphophthalein, oestrone sulphate, haem and bilirubin) that bind to ligandin and aminoazo-dye-binding protein A. Biochem J. 1979 May 15;180(2):327–337. doi: 10.1042/bj1800327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tipping E., Ketterer B., Christodoulides L. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some uncharged molecules (2-acetylaminofluorene, 4-dimethylaminoazobenzene, oestrone and testosterone) that bind to ligandin and aminoazo-dye-binding protein A. Biochem J. 1979 May 15;180(2):319–326. doi: 10.1042/bj1800319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tipping E., Ketterer B., Koskelo P. The binding of porphyrins by ligandin. Biochem J. 1978 Mar 1;169(3):509–516. doi: 10.1042/bj1690509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tiribelli C., Lunazzi G., Luciani M., Panfili E., Gazzin B., Liut G., Sandri G., Sottocasa G. Isolation of a sulfobromophthalein-binding protein from hepatocyte plasma membrane. Biochim Biophys Acta. 1978 Jan 25;532(1):105–112. doi: 10.1016/0005-2795(78)90453-1. [DOI] [PubMed] [Google Scholar]
  43. Träuble H., Sackmann E. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. 3. Structure of a steroid-lecithin system below and above the lipid-phase transition. J Am Chem Soc. 1972 Jun 28;94(13):4499–4510. doi: 10.1021/ja00768a015. [DOI] [PubMed] [Google Scholar]
  44. Uptake of bromosulfophthalein by isolated liver cells. Eur J Biochem. 1976 Apr 15;64(1):189–197. [PubMed] [Google Scholar]
  45. Vanderkooi J. M., Callis J. B. Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry. 1974 Sep 10;13(19):4000–4006. doi: 10.1021/bi00716a028. [DOI] [PubMed] [Google Scholar]
  46. Wang J. H. Chemical reaction accelerated transport of molecules through membranes. J Theor Biol. 1963 Mar;4(2):175–178. doi: 10.1016/0022-5193(63)90026-2. [DOI] [PubMed] [Google Scholar]
  47. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]
  49. Wittenberg J. B. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem. 1966 Jan 10;241(1):104–114. [PubMed] [Google Scholar]
  50. Wyman J. Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem. 1966 Jan 10;241(1):115–121. [PubMed] [Google Scholar]
  51. van Bezooijen C. F., Grell T., Knook D. L. Bromsulfophthalein uptake by isolated liver parenchymal cells. Biochem Biophys Res Commun. 1976 Mar 22;69(2):354–361. doi: 10.1016/0006-291x(76)90529-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES