Abstract
We have used isoelectric focusing to measure the differences between the pI values of various normal and mutant human haemoglobins when completely deoxygenated and when fully liganded with CO. It was assumed that the ΔpI(deox.–ox.) values might correspond quantitatively to the intrinsic alkaline Bohr effect, as most of the anionic cofactors of the haemoglobin molecule are `stripped' off during the electrophoretic process. In haemoglobins known to exhibit a normal Bohr coefficient (ΔlogP50/ΔpH) in solutions, the ΔpI(deox.–ox.) values are lower the higher their respective pI(ox.) values. This indicates that for any particular haemoglobin the ΔpI(deox.–ox.) value accounts for the difference in surface charges at the pH of its pI value. This was confirmed by measuring, by the direct-titration technique, the difference in pH of deoxy and fully liganded haemoglobin A0 (α2β2) solutions in conditions approximating those of the isoelectric focusing, i.e. at 5°C and very low concentration of KCl. The variation of the ΔpH(deox.–ox.) curve as a function of pH (ox.) was similar to the isoelectric-focusing curve relating the variation of ΔpI(deox.–ox.) versus pI(ox.) in various haemoglobins with Bohr factor identical with that of haemoglobin A0. In haemoglobin A0 the ΔpI(deox.–ox.) value is 0.17 pH unit, which corresponds to a difference of 1.20 positive charges between the oxy and deoxy states of the tetrameric haemoglobin. This value compares favourably with the values of the intrinsic Bohr effect estimated in back-titration experiments. The ΔpI(deox.–ox.) values of mutant or chemically modified haemoglobins carrying an abnormality at the N- or C-terminus of the α-chains are decreased by 30% compared with the ΔpI value measured in haemoglobin A0. When the C-terminus of the β-chains is altered, as in Hb Nancy (α2βTyr-145→Asp2), we observed a 70% decrease in the ΔpI value compared with that measured in haemoglobin A0. These values are in close agreement with the estimated respective roles of the two major Bohr groups, Val-1α and His-146β, at the origin of the intrinsic alkaline Bohr effect [Kilmartin, Fogg, Luzzana & Rossi-Bernardi (1973) J. Biol. Chem. 248, 7039–7043; Perutz, Kilmartin, Nishikura, Fogg, Butler & Rollema (1980) J. Mol. Biol. 138, 649–670]. In other mutant haemoglobins it is demonstrated also that the ΔpI(deox.–ox.) value may be decreased or even suppressed when the substitution affects residues involved in the stability of the tetramer. These results support the interpretation proposed by Perutz, Kilmartin, Nishikura, Fogg, Butler & Rollema [(1980), J. Mol. Biol. 138, 649–670] for the mechanism of the alkaline Bohr effect, and also indicate that the transition between the two quaternary configurations is a prerequisite for the full expression of the alkaline Bohr effect.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bunn H. F., Wohl R. C., Bradley T. B., Cooley M., Gibson Q. H. Functional properties of hemoglobin Kempsey. J Biol Chem. 1974 Dec 10;249(23):7402–7409. [PubMed] [Google Scholar]
- Bursaux E., Blouquit Y., Poyart C., Rosa J. Hemoglobin Ty GARD (alphaA2beta2 124 (H2) Pro replaced by Gln). A stable high O2 affinity variant at the alpha1beta1 contact. FEBS Lett. 1978 Apr 1;88(1):155–159. doi: 10.1016/0014-5793(78)80630-9. [DOI] [PubMed] [Google Scholar]
- De Brun S. H., Janssen L. H. Comparison of the oxygen and proton binding behavior of human hemoglobin A and A 2 . Biochim Biophys Acta. 1973 Feb 21;295(2):490–494. doi: 10.1016/0005-2795(73)90044-5. [DOI] [PubMed] [Google Scholar]
- Elion J., Belkhodja O., Wajcman H., Labie D. Two variants of hemoglobin D in the algerian population: hemoglobin D Ouled Rabah 19 (BI) Asn leads to Lys and hemoglobin D Iran 22 (Br) Glu leads to Gln. Biochim Biophys Acta. 1973 Jun 15;310(2):360–364. doi: 10.1016/0005-2795(73)90117-7. [DOI] [PubMed] [Google Scholar]
- Gacon G., Belkhodja O., Wajcman H., Labie D., Najman A. Structural and functional studies of Hb Rothschild beta (C3) Trp replaced by Arg. A new variant of the alpha1beta2 contact. FEBS Lett. 1977 Oct 15;82(2):243–246. doi: 10.1016/0014-5793(77)80593-0. [DOI] [PubMed] [Google Scholar]
- Gacon G., Wajcman H., Labie D. Structural and functional study of Hb Nancy beta 145 (HC 2) Tyr replaced by Asp. A high oxygen affinity hemoglobin. FEBS Lett. 1975 Aug 1;56(1):39–42. doi: 10.1016/0014-5793(75)80106-2. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V., Fogg J. H., Perutz M. F. Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry. 1980 Jul 8;19(14):3189–3183. doi: 10.1021/bi00555a013. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V., Fogg J., Luzzana M., Rossi-Bernardi L. Role of the alpha-amino groups of the alpha and beta chains of human hemoglobin in oxygen-linked binding of carbon dioxide. J Biol Chem. 1973 Oct 25;248(20):7039–7043. [PubMed] [Google Scholar]
- Kilmartin J. V., Hewitt J. A., Wootton J. F. Alteration of functional properties associated with the change in quaternary structure in unliganded haemoglobin. J Mol Biol. 1975 Apr 5;93(2):203–218. doi: 10.1016/0022-2836(75)90128-x. [DOI] [PubMed] [Google Scholar]
- Krishnamoorthy R., Wajcman H., Labie D. Isoelectrofocusing: a method of multiple applications for hemoglobin studies. Clin Chim Acta. 1976 Jun 1;69(2):203–209. doi: 10.1016/0009-8981(76)90497-6. [DOI] [PubMed] [Google Scholar]
- Matthew J. B., Hanania G. I., Gurd F. R. Electrostatic effects in hemoglobin: Bohr effect and ionic strength dependence of individual groups. Biochemistry. 1979 May 15;18(10):1928–1936. doi: 10.1021/bi00577a012. [DOI] [PubMed] [Google Scholar]
- Nishikura K. Identification of histidine-122alpha in human haemoglobin as one of the unknown alkaline Bohr groups by hydrogen--tritium exchange. Biochem J. 1978 Aug 1;173(2):651–657. doi: 10.1042/bj1730651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell S., Mandaro R., Schuster T. M., Arnone A. X-ray diffraction and solution studies of specifically carbamylated human hemoglobin A. Evidence for the location of a proton- and oxygen-linked chloride binding site at valine 1 alpha. J Biol Chem. 1979 Dec 10;254(23):12204–12208. [PubMed] [Google Scholar]
- Ohe M., Kajita A. Changes in pKa values of individual histidine residues of human hemoglobin upon reaction with carbon monoxide. Biochemistry. 1980 Sep 16;19(19):4443–4450. doi: 10.1021/bi00560a010. [DOI] [PubMed] [Google Scholar]
- Park C. M. Isoelectric focusing and the study of interacting protein systems: ligand binding, phosphate binding, and subunit exchange in hemoglobin. Ann N Y Acad Sci. 1973 Jun 15;209:237–257. doi: 10.1111/j.1749-6632.1973.tb47532.x. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Kilmartin J. V., Nishikura K., Fogg J. H., Butler P. J., Rollema H. S. Identification of residues contributing to the Bohr effect of human haemoglobin. J Mol Biol. 1980 Apr 15;138(3):649–668. doi: 10.1016/s0022-2836(80)80022-2. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Mazzarella L., Crowther R. A., Greer J., Kilmartin J. V. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature. 1969 Jun 28;222(5200):1240–1243. doi: 10.1038/2221240a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
- Poyart C., Bursaux E., Arnone A., Bonaventura J., Bonaventura C. Structural and functional studies of hemoglobin Suresnes (arg 141 alpha 2 replaced by His beta 2). Consequences of disrupting an oxygen-linked anion-binding site. J Biol Chem. 1980 Oct 10;255(19):9465–9473. [PubMed] [Google Scholar]
- Poyart C., Bursaux E., Bohn B., Guesnon P. The involvement of tertiary conformational changes and the role of the alpha-chain-binding sites on oxygen-linked chloride release from human hemoglobin. Biochim Biophys Acta. 1980 Dec 16;626(2):417–423. doi: 10.1016/0005-2795(80)90137-3. [DOI] [PubMed] [Google Scholar]
- Rollema H. S., De Bruin S. H., Van Os G. A. The influence of organic phosphates on the Bohr effect of human hemoglobin valency hybrids. Biophys Chem. 1976 May;4(3):223–228. doi: 10.1016/0301-4622(76)80068-3. [DOI] [PubMed] [Google Scholar]
- Rollema H. S., de Bruin S. H., Janssen L. H., van Os G. A. The effect of potassium chloride on the Bohr effect of human hemoglobin. J Biol Chem. 1975 Feb 25;250(4):1333–1339. [PubMed] [Google Scholar]
- Russu I. M., Ho N. T., Ho C. Role of the beta 146 histidyl residue in the alkaline Bohr effect of hemoglobin. Biochemistry. 1980 Mar 4;19(5):1043–1052. doi: 10.1021/bi00546a033. [DOI] [PubMed] [Google Scholar]
- Steinberg M. H., Lovell W. J., Wells S., Coleman M., Dreiling B. J., Adams J. G. Hemoglobin Hope: studies of oxygen equilibrium in heterozygotes, hemoglobin S-Hope disease, and isolated hemoglobin Hope. J Lab Clin Med. 1976 Jul;88(1):125–131. [PubMed] [Google Scholar]
- Van Beek G. G., De Bruin S. H. Identification of the residues involved in the oxygen-linked chloride-ion binding sites in human deoxyhemoglobin and oxyhemoglobin. Eur J Biochem. 1980 Apr;105(2):353–360. doi: 10.1111/j.1432-1033.1980.tb04508.x. [DOI] [PubMed] [Google Scholar]
- Wajcman H., Elion J., Boissel J. P., Labie D., Jos J., Girot R. A silent hemoglobin variant: hemoglobin necker enfants-malades alpha 20 (B1) His leads to Tyr. Hemoglobin. 1980;4(2):177–184. doi: 10.3109/03630268009042384. [DOI] [PubMed] [Google Scholar]
- de Traverse P. M., Lehmann H., Coquelet M. L., Beale D., Isaacs W. A. Etude d'une hémoglobine J-alpha non encore décrite, dans une famille française. C R Seances Soc Biol Fil. 1966;160(12):2270–2272. [PubMed] [Google Scholar]
- van Beek G. G., Zuiderweg E. R., de Bruin S. The binding of protons and inositol hexakisphosphate to ligated and unligated human des-Arg141alpha-hemoglobin. Eur J Biochem. 1978 Dec 1;92(1):309–316. [PubMed] [Google Scholar]
