Abstract
The effect of cholecalciferol and its metabolites on ornithine decarboxylase activity was investigated in the duodenal mucosa of vitamin D-deficient chicks. The duodenal ornithine decarboxylase activity decreased in animals fed a vitamin D-deficient diet and its retarded activity was increased dose-dependently by a single injection of cholecalciferol. Among various metabolites of cholecalciferol tested, 1 alpha, 25-dihydroxycholecalciferol [ 1 alpha, 25 (OH)2D3] was the most potent stimulator. Stimulation of the enzyme activity was detected as early as 2h after intravenous administration of 1 alpha, 25 (OH)2D3 and a maximal value was attained at 6 h. The maximal value was 27 times higher than the control. In addition, treatment with 1 alpha 25 (OH)2D3 affected the duodenal content of polyamines. The content of putrescine increased to a value of three times that of the control 6 h after the hormone administration. The spermidine content did not change appreciably. The enhancement of duodenal ornithine decarboxylase activity by 1 alpha, 25 (OH)2D3 occurred in parallel with the enhancement of calcium absorption, which was first detected 3 h after the hormone administration. The enhancement appeared to be tissue-specific. It was observed in every intestinal segment, but was highest in the duodenum. Enzyme activity in other tissues was not influenced appreciably by 1 alpha, 25 (OH)2D3. These results clearly indicate that the duodenal biosynthesis of polyamines is regulated by 1 alpha, 25 (OH)2D3, suggesting the possibility that duodenal ornithine decarboxylase may be involved in the calcium absorption mechanism.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. J Biol Chem. 1974 Feb 25;249(4):1258–1262. [PubMed] [Google Scholar]
- Christakos S., Norman A. W. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979 Jul 12;89(1):56–63. doi: 10.1016/0006-291x(79)90942-2. [DOI] [PubMed] [Google Scholar]
- Cohen S., O'Malley B. W., Stastny M. Estrogenic induction of ornithine decarboxylase in vivo and in vitro. Science. 1970 Oct 16;170(3955):336–338. doi: 10.1126/science.170.3955.336. [DOI] [PubMed] [Google Scholar]
- DeLuca H. F., Schnoes H. K. Metabolism and mechanism of action of vitamin D. Annu Rev Biochem. 1976;45:631–666. doi: 10.1146/annurev.bi.45.070176.003215. [DOI] [PubMed] [Google Scholar]
- Guillemant J., Guillemant S. Early rise in cyclic GMP after 1,25-dihydroxycholecalciferol administration in the chick intestinal mucosa. Biochem Biophys Res Commun. 1980 Apr 14;93(3):906–911. doi: 10.1016/0006-291x(80)91161-4. [DOI] [PubMed] [Google Scholar]
- Haussler M. R., McCain T. A. Basic and clinical concepts related to vitamin D metabolism and action (first of two parts). N Engl J Med. 1977 Nov 3;297(18):974–983. doi: 10.1056/NEJM197711032971804. [DOI] [PubMed] [Google Scholar]
- Hölttä E., Jänne J. Ornithine decarboxylase activity and the accumulation of putrescine at early stages of liver regeneration. FEBS Lett. 1972 Jun 1;23(1):117–121. doi: 10.1016/0014-5793(72)80298-9. [DOI] [PubMed] [Google Scholar]
- Jänne J., Raina A., Siimes M. Mechanism of stimulation of polyamine synthesis by growth hormone in rat liver. Biochim Biophys Acta. 1968 Sep 24;166(2):419–426. doi: 10.1016/0005-2787(68)90230-x. [DOI] [PubMed] [Google Scholar]
- Kaye A. M., Icekson I., Lindner H. R. Stimulation by estrogens of ornithine and S-adenosylmethionine decarboxylases in the immature rat uterus. Biochim Biophys Acta. 1971 Oct;252(1):150–159. doi: 10.1016/0304-4165(71)90103-6. [DOI] [PubMed] [Google Scholar]
- Kream B. E., Jose M., Yamada S., DeLuca H. F. A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science. 1977 Sep 9;197(4308):1086–1088. doi: 10.1126/science.887939. [DOI] [PubMed] [Google Scholar]
- Mason J. B., Hay R. W., Leresche J., Peel S., Darley S. The story of vitamin D: from vitamin to hormone. Lancet. 1974 Mar 2;1(7853):325–329. [PubMed] [Google Scholar]
- Maudsley D. V. Regulation of polyamine biosynthesis. Biochem Pharmacol. 1979;28(2):153–161. doi: 10.1016/0006-2952(79)90496-9. [DOI] [PubMed] [Google Scholar]
- Morris D. R., Fillingame R. H. Regulation of amino acid decarboxylation. Annu Rev Biochem. 1974;43(0):303–325. doi: 10.1146/annurev.bi.43.070174.001511. [DOI] [PubMed] [Google Scholar]
- Omdahl J., Holick M., Suda T., Tanaka Y., DeLuca H. F. Biological activity of 1,25-dihydroxycholecalciferol. Biochemistry. 1971 Jul 20;10(15):2935–2940. doi: 10.1021/bi00791a022. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Williams-Ashman H. G. Biosynthesis of putrescine in the prostate gland of the rat. Biochem J. 1968 Jul;108(4):533–539. doi: 10.1042/bj1080533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russel D. H., McVicker T. A. Polyamines in the developing rat and in supportive tissues. Biochim Biophys Acta. 1972 Jan 31;259(2):247–258. doi: 10.1016/0005-2787(72)90065-2. [DOI] [PubMed] [Google Scholar]
- Russell D. H., Snyder S. H., Medina V. J. Growth hormone induction of ornithine decarboxylase in rat liver. Endocrinology. 1970 Jun;86(6):1414–1419. doi: 10.1210/endo-86-6-1414. [DOI] [PubMed] [Google Scholar]
- Russell D., Snyder S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1420–1427. doi: 10.1073/pnas.60.4.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samejima K., Kawase M., Sakamoto S., Okada M., Endo Y. A sensitive fluorometric method for the determination of aliphatic diamines and polyamines in biological materials by high-speed liquid chromatography. Anal Biochem. 1976 Dec;76(2):392–406. doi: 10.1016/0003-2697(76)90334-1. [DOI] [PubMed] [Google Scholar]
- Spencer R., Charman M., Lawson D. E., Emtage J. S. Production and properties of vitamin-D-induced mRNA for chick calcium-binding protein. Eur J Biochem. 1976 Dec 11;71(2):399–409. doi: 10.1111/j.1432-1033.1976.tb11127.x. [DOI] [PubMed] [Google Scholar]
- Spencer R., Charman M., Wilson P., Lawson E. Vitamin d-stimulated intestinal calcium absorption may not involve calcium-binding protein directly. Nature. 1976 Sep 9;263(5573):161–163. doi: 10.1038/263161a0. [DOI] [PubMed] [Google Scholar]
- Spielvogel A. M., Farley R. D., Norman A. W. Studies on the mechanism of action of calciferol. V. Turnover time of chick intestinal epithelial cells in relation to the intestinal action of vitamin D. Exp Cell Res. 1972 Oct;74(2):359–366. doi: 10.1016/0014-4827(72)90388-6. [DOI] [PubMed] [Google Scholar]
- Takigawa M., Watanabe R., Ishida H., Asada A., Suzuki F. Induction by parathyroid hormone of ornithine decarboxylase in rabbit costal chondrocytes in culture. J Biochem. 1979 Jan;85(1):311–314. doi: 10.1093/oxfordjournals.jbchem.a132326. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Corradino R. A., Taylor A. N. Vitamin D-dependent calcium-binding protein. Purification and some properties. J Biol Chem. 1968 Jul 25;243(14):3978–3986. [PubMed] [Google Scholar]
- Wilson P. W., Lawson D. E. 1,25-Dihydroxyvitamin D stimulation of specific membrane proteins in chick intestine. Biochim Biophys Acta. 1977 May 26;497(3):805–811. doi: 10.1016/0304-4165(77)90302-6. [DOI] [PubMed] [Google Scholar]
- Zerwekh J. E., Haussler M. R., Lindell T. J. Rapid enhancement of chick intestinal DNA-dependent RNA polymerase II activity by 1 alpha, 25-dihydroxyvitamin D3, in vivo. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2337–2341. doi: 10.1073/pnas.71.6.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
