Abstract
1. The uptake and subsequent phosphorylation of deoxyglucose into perfused rat hearts was monitored by 31P n.m.r. 2. The accumulated deoxyglucose 6-phosphate provided (a) an independent method for measuring cytosolic pH in the normoxic and ischaemic heart tissue and (b) a way of studying the activity of phosphorylase during ischaemia. 3. The cytosolic pH measured from the 31P n.m.r. resonance position of deoxyglucose 6-phosphate is in good agreement under all conditions studied with that obtained previously from the Pi resonances. This eliminates any possible doubts about the use of Pi for measuring intracellular pH. 4. Deoxyglucose 6-phosphate in vitro inhibits phosphorylase b but not phosphorylase a. Its inhibitory effect on glycogenolysis during ischaemia is monitored by measuring tissue acidosis by n.m.r. In the initial stages of ischaemia phosphorylase activity is not inhibited, whereas after about 5 min approx. 50% of the activity is inhibited. These observations are interpreted in terms of the relative contributions of phosphorylase a and the AMP-dependent phosphorylase b activities during ischaemia.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerman J. J., Grove T. H., Wong G. G., Gadian D. G., Radda G. K. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature. 1980 Jan 10;283(5743):167–170. doi: 10.1038/283167a0. [DOI] [PubMed] [Google Scholar]
- Battersby M. K., Radda G. K. Intersubunit transmission of ligand effects in the glycogen phosphorylase b dimer. Biochemistry. 1979 Aug 21;18(17):3774–3780. doi: 10.1021/bi00584a021. [DOI] [PubMed] [Google Scholar]
- Birkett D. J., Dwek R. A., Radda G. K., Richards R. E., Salmon A. G. Probes for the conformational transitions of phosphorylase b. Effect of ligands studied by proton relaxation enhancement, fluorescence and chemical reactivities. Eur J Biochem. 1971 Jun 29;20(4):494–508. doi: 10.1111/j.1432-1033.1971.tb01419.x. [DOI] [PubMed] [Google Scholar]
- CORNBLATH M., RANDLE P. J., PARMEGGIANI A., MORGAN H. E. Regulation of glycogenolysis in muscle. Effects of glucagon and anoxia on lactate production, glycogen content, and phosphorylase activity in the perfused isolated rat heart. J Biol Chem. 1963 May;238:1592–1597. [PubMed] [Google Scholar]
- CRANE R. K., SOLS A. The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds. J Biol Chem. 1954 Oct;210(2):597–606. [PubMed] [Google Scholar]
- Cohen S. M., Ogawa S., Rottenberg H., Glynn P., Yamane T., Brown T. R., Shulman R. G. P nuclear magnetic resonance studies of isolated rat liver cells. Nature. 1978 Jun 15;273(5663):554–556. doi: 10.1038/273554a0. [DOI] [PubMed] [Google Scholar]
- Garlick P. B., Radda G. K., Seeley P. J. Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1256–1262. doi: 10.1016/0006-291x(77)91653-9. [DOI] [PubMed] [Google Scholar]
- Garlick P. B., Radda G. K., Seeley P. J. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J. 1979 Dec 15;184(3):547–554. doi: 10.1042/bj1840547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graff J. C., Wohlhueter R. M., Plagemann P. G. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors. J Cell Physiol. 1978 Aug;96(2):171–188. doi: 10.1002/jcp.1040960206. [DOI] [PubMed] [Google Scholar]
- Griffiths J. R., Dwek R. A., Radda G. K. Conformational changes in glycogen phosphorylase studied with a spin-label probe. Eur J Biochem. 1976 Jan 2;61(1):237–242. doi: 10.1111/j.1432-1033.1976.tb10016.x. [DOI] [PubMed] [Google Scholar]
- Grove T. H., Ackerman J. J., Radda G. K., Bore P. J. Analysis of rat heart in vivo by phosphorus nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1980 Jan;77(1):299–302. doi: 10.1073/pnas.77.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMMERMEISTER K. E., YUNIS A. A., KREBS E. G. STUDIES ON PHOSPHORYLASE ACTIVATION IN THE HEART. J Biol Chem. 1965 Mar;240:986–991. [PubMed] [Google Scholar]
- HURST R. O. THE DETERMINATION OF NUCLEOTIDE PHOSPHORUS WITH A STANNOUS CHLORIDE-HYDRAZINE SULPHATE REAGENT. Can J Biochem. 1964 Feb;42:287–292. doi: 10.1139/o64-033. [DOI] [PubMed] [Google Scholar]
- Hollis D. P., Nunnally R. L., Jacobus W. E., Taylor G. J., 4th Detection of regional ischemia in perfused beating hearts by phosphorus nuclear magnetic resonance. Biochem Biophys Res Commun. 1977 Apr 25;75(4):1086–1091. doi: 10.1016/0006-291x(77)91493-0. [DOI] [PubMed] [Google Scholar]
- KIPNIS D. M., CORI C. F. Studies of tissue permeability. V. The penetration and phosphorylation of 2-deoxyglucose in the rat diaphragm. J Biol Chem. 1959 Jan;234(1):171–177. [PubMed] [Google Scholar]
- Lawrence J. C., Jr, Larner J. Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorylation. J Biol Chem. 1978 Apr 10;253(7):2104–2113. [PubMed] [Google Scholar]
- MONTGOMERY R. Determination glycogen. Arch Biochem Biophys. 1957 Apr;67(2):378–386. doi: 10.1016/0003-9861(57)90292-8. [DOI] [PubMed] [Google Scholar]
- MORGAN H. E., PARMEGGIANI A. REGULATION OF GLYCOGENOLYSIS IN MUSCLE. II. CONTROL OF GLYCOGEN PHOSPHORYLASE REACTION IN ISOLATED PERFUSED HEART. J Biol Chem. 1964 Aug;239:2435–2439. [PubMed] [Google Scholar]
- PARMEGGIANI A., MORGAN H. E. Effect of adenine nucleotides and inorganic phosphate on muscle phosphorylase activity. Biochem Biophys Res Commun. 1962 Oct 17;9:252–256. doi: 10.1016/0006-291x(62)90068-2. [DOI] [PubMed] [Google Scholar]
- Poole-Wilson P. A. Measurement of myocardial intracellular pH in pathological states. J Mol Cell Cardiol. 1978 Jun;10(6):511–526. doi: 10.1016/0022-2828(78)90010-x. [DOI] [PubMed] [Google Scholar]
- Salhany J. M., Pieper G. M., Wu S., Todd G. L., Clayton F. C., Eliot R. S. 31P Nuclear magnetic resonance measurement of cardiac pH in perfused guinea-pig hearts. J Mol Cell Cardiol. 1979 Jun;11(6):601–610. doi: 10.1016/0022-2828(79)90434-6. [DOI] [PubMed] [Google Scholar]
- Scheuer J., Stezoski S. W. Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res. 1970 Nov;27(5):835–849. doi: 10.1161/01.res.27.5.835. [DOI] [PubMed] [Google Scholar]
- Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]
- Wollenberger A., Krause E. G., Heier G. Stimulation of 3',5'-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem Biophys Res Commun. 1969 Aug 15;36(4):664–670. doi: 10.1016/0006-291x(69)90357-x. [DOI] [PubMed] [Google Scholar]