Abstract
1. Cultured calvaria cells oxidized palmitate and octanoate to CO2 and water-soluble products. 2. When these cells were treated for 6 days with 0.025 and 0.25 mM-dichloromethanediphosphonate, oxidation of palmitate was increased, whereas that of octanoate was influenced less. 3. When the rate of oxidation was raised by increasing the palmitate concentration in the medium, the effect of the diphosphonate was decreased and finally disappeared. 4. 1-Hydroxyethane-1,1-diphosphonate had only minor effects. 5. The increase in palmitate oxidation appeared 2 days after the addition of dichloromethanediphosphonate, simultaneously with a fall in lactate production. (Inhibition of glycolysis by diphosphonates has already been shown.) 6. Cycloheximide, an inhibitor of protein synthesis, did not influence the effect of dichloromethanediphosphonate on the oxidation of palmitate and the production of lactate. 7. Cells cultured with dichloromethanediphosphonate showed a faster uptake of palmitic acid than did control cells. However, this observation did not explain the increased palmitate oxidation, since uptake was much faster than oxidation, and was therefore not the rate-limiting step. 8. 2-Bromopalmitate, an inhibitor of fatty acid oxidation, did not influence the inhibition of glycolysis by the diphosphonates. This inhibition, therefore, did not result from the increased oxidation of palmitate. It is also unlikely that the increased oxidation of palmitate is connected with the inhibition of glycolysis.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman R. D., Johnston C. C., Khairi M. R., Wellman H., Serafini A. N., Sankey R. R. Influence of disodium etidronate on clinical and laboratory manifestations of Paget's disease of bone (osteitis deformans). N Engl J Med. 1973 Dec 27;289(26):1379–1384. doi: 10.1056/NEJM197312272892601. [DOI] [PubMed] [Google Scholar]
- Chase J. F., Tubbs P. K. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters. Biochem J. 1972 Aug;129(1):55–65. doi: 10.1042/bj1290055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
- EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
- Engel P. C., Jones J. B. Causes and elimination of erratic blanks in enzymatic metabolite assays involving the use of NAD+ in alkaline hydrazine buffers: improved conditions for the assay of L-glutamate, L-lactate, and other metabolites. Anal Biochem. 1978 Aug 1;88(2):475–484. doi: 10.1016/0003-2697(78)90447-5. [DOI] [PubMed] [Google Scholar]
- Fast D. K., Felix R., Dowse C., Neuman W. F., Fleisch H. The effects of diphosphonates on the growth and glycolysis of connective-tissue cells in culture. Biochem J. 1978 Apr 15;172(1):97–107. doi: 10.1042/bj1720097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felix R., Fast D. K., Sallis J. D., Fleisch H. Effect of diphosphonates on glycogen content of rabbit ear cartilage cells in culture. Calcif Tissue Int. 1980;30(2):163–166. doi: 10.1007/BF02408621. [DOI] [PubMed] [Google Scholar]
- Felix R., Fleisch H. Increase in alkaline phosphatase activity in calvaria cells cultured with diphosphonates. Biochem J. 1979 Oct 1;183(1):73–81. doi: 10.1042/bj1830073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleisch H. A., Russell R. G., Bisaz S., Mühlbauer R. C., Williams D. A. The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest. 1970 Mar;1(1):12–18. doi: 10.1111/j.1365-2362.1970.tb00591.x. [DOI] [PubMed] [Google Scholar]
- Fleisch H., Russell R. G., Francis M. D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science. 1969 Sep 19;165(3899):1262–1264. doi: 10.1126/science.165.3899.1262. [DOI] [PubMed] [Google Scholar]
- Francis M. D., Russell R. G., Fleisch H. Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science. 1969 Sep 19;165(3899):1264–1266. doi: 10.1126/science.165.3899.1264. [DOI] [PubMed] [Google Scholar]
- Guenther H. L., Guenther H. E., Fleisch H. Effects of 1-hydroxyethane-1,1-diphosphonate and dichloromethanediphosphonate on rabbit articular chondrocytes in culture. Biochem J. 1979 Nov 15;184(2):203–214. doi: 10.1042/bj1840203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilland D. F., Fleisch H. The effect of in vivo treatment with EHDP and/or 1,25-DHCC on calcium uptake and release in isolated kidney mitochondria. Biochem Biophys Res Commun. 1974 Dec 11;61(3):906–911. doi: 10.1016/0006-291x(74)90241-1. [DOI] [PubMed] [Google Scholar]
- Guilland D. F., Sallis J. D., Fleisch H. The effect of two diphosphonates on the handling of calcium by rat kidney mitochondria in vitro. Calcif Tissue Res. 1974;15(4):303–314. doi: 10.1007/BF02059065. [DOI] [PubMed] [Google Scholar]
- Guncaga J., Lauffenburger T., Lentner C., Dambacher M. A., Haas H. G., Fleisch H., Olah A. J. Diphosphonate treatment of Paget's disease of bone. A correlated metabolic, calcium kinetic and morphometric study. Horm Metab Res. 1974 Jan;6(1):62–69. [PubMed] [Google Scholar]
- Lorch E., Gey K. F. Photometric "titration" of free fatty acids with the Technicon AutoAnalyzer. Anal Biochem. 1966 Aug;16(2):244–252. doi: 10.1016/0003-2697(66)90152-7. [DOI] [PubMed] [Google Scholar]
- Mahadevan S., Sauer F. Effect of -bromo-palmitate on the oxidation of palmitic acid by rat liver cells. J Biol Chem. 1971 Oct 10;246(19):5862–5867. [PubMed] [Google Scholar]
- Meunier P. J., Chapuy M. C., Alexandre C., Bressot C., Edouard C., Vignon C., Mathieu L., Trechsel U. Effects of disodium dichloromethylene diphosphonate on Paget's disease of bone. Lancet. 1979 Sep 8;2(8141):489–492. doi: 10.1016/s0140-6736(79)91551-4. [DOI] [PubMed] [Google Scholar]
- Morgan D. B., Monod A., Russel R. G., Fleisch H. Influence of dichloromethylene diphosphonate (Cl2MDP) and calcitonin on bone resorption, lactate production and phosphatase and pyrophosphatase content of mouse calvaria treated with parathyroid hormone in vitro. Calcif Tissue Res. 1973 Dec 31;13(4):287–294. doi: 10.1007/BF02015418. [DOI] [PubMed] [Google Scholar]
- Ockner R. K., Manning J. A. Fatty acid binding protein. Role in esterification of absorbed long chain fatty acid in rat intestine. J Clin Invest. 1976 Sep;58(3):632–641. doi: 10.1172/JCI108510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell R. G., Mühlbauer R. C., Bisaz S., Williams D. A., Fleisch H. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res. 1970;6(3):183–196. doi: 10.1007/BF02196199. [DOI] [PubMed] [Google Scholar]
- Russell R. G., Smith R., Preston C., Walton R. J., Woods C. G. Diphosphonates in Paget's disease. Lancet. 1974 May 11;1(7863):894–898. doi: 10.1016/s0140-6736(74)90347-x. [DOI] [PubMed] [Google Scholar]
- Samuel D., Paris S., Ailhaud G. Uptake and metabolism of fatty acids and analogues by cultured cardiac cells from chick embryo. Eur J Biochem. 1976 May 1;64(2):583–595. doi: 10.1111/j.1432-1033.1976.tb10338.x. [DOI] [PubMed] [Google Scholar]
- Siris E. S., Sherman W. H., Baquiran D. C., Schlatterer J. P., Osserman E. F., Canfield R. E. Effects of dichloromethylene diphosphonate on skeletal mobilization of calcium in multiple myeloma. N Engl J Med. 1980 Feb 7;302(6):310–315. doi: 10.1056/NEJM198002073020602. [DOI] [PubMed] [Google Scholar]