Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 May 15;196(2):383–390. doi: 10.1042/bj1960383

The separate roles of glucose and insulin in the induction of glucokinase in hepatocytes isolated from neonatal rats.

M J Wakelam, D G Walker
PMCID: PMC1163009  PMID: 6274313

Abstract

1. The specificity of the effect of glucose on the induction of glucokinase activity that occurs when hepatocytes freshly isolated from 13-day-old rats are incubated in Medium 199 together with insulin [Wakelam & Walker (1980) FEBS Lett. 111, 115-119] was examined. A pattern that is different from other known effects of glucose is found, and metabolism of this compound is not necessarily to account for this particular effect. 2. The effects of a raised glucose concentration and of insulin on the induction can be separated. The hexose initiates the process in the absence of insulin in a manner that is sensitive to actinomycin D but not to cycloheximide. The subsequent effect of insulin is dependent on the prior effect of glucose or other positive analogue, does not require the presence of glucose and is inhibited by cycloheximide but not by actinomycin D. 3. Induction of glucokinase in vitro in hepatocytes from neonatal animals is inhibited by adrenaline, glucagon and dibutyryl cyclic AMP, but not by vasopressin or angiotensin II. The inhibition by cyclic AMP is on the stage requiring insulin and is comparatively specific, because total protein synthesis is not apparently diminished. 4. The implications of these results are discussed with reference to possible mechanisms of induction and to the situation in vivo.

Full text

PDF
383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980 Jan;18(1):5–15. doi: 10.1007/BF01228295. [DOI] [PubMed] [Google Scholar]
  2. Baur H., Heldt H. W. Transport of hexoses across the liver-cell membrane. Eur J Biochem. 1977 Apr 1;74(2):397–403. doi: 10.1111/j.1432-1033.1977.tb11404.x. [DOI] [PubMed] [Google Scholar]
  3. Bloxham D. P., Klaipongpan A. The involvement of adenosine 3'5-cyclic monophosphate in the translational control of protein synthesis. Int J Biochem. 1979;10(1):1–5. doi: 10.1016/0020-711x(79)90131-9. [DOI] [PubMed] [Google Scholar]
  4. Craik J. D., Elliott K. R. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J. 1979 Aug 15;182(2):503–508. doi: 10.1042/bj1820503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Katz N. R., Nauck M. A., Wilson P. T. Induction of glucokinase by insulin under the permissive action of dexamethasone in primary rat hepatocyte cultures. Biochem Biophys Res Commun. 1979 May 14;88(1):23–29. doi: 10.1016/0006-291x(79)91691-7. [DOI] [PubMed] [Google Scholar]
  6. Kirk C. J., Verrinder T. R., Hems D. A. Rapid stimulation, by vasopressin and adrenaline, of inorganic phosphate incorporation into phosphatidyl inositol in isolated hepatocytes. FEBS Lett. 1977 Nov 15;83(2):267–271. doi: 10.1016/0014-5793(77)81020-x. [DOI] [PubMed] [Google Scholar]
  7. Klaipongpan A., Bloxham D. P., Akhtar M. Enhancement of the anti-anabolic response to adenosine 3':5'-cyclic monophosphate during development. The inhibition of hepatic protein synthesis. Biochem J. 1977 Nov 15;168(2):271–275. doi: 10.1042/bj1680271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kletzien R. F., Pariza M. W., Becker J. E., Potter V. R., Butcher F. R. Induction of amino acid transport in primary cultures of adult rat liver parenchymal cells by insulin. J Biol Chem. 1976 May 25;251(10):3014–3020. [PubMed] [Google Scholar]
  9. Leffert H. L., Koch K. S. Proliferation of hepatocytes. Ciba Found Symp. 1977;(55):61–82. doi: 10.1002/9780470720363.ch4. [DOI] [PubMed] [Google Scholar]
  10. MORGAN J. F., MORTON H. J., PARKER R. C. Nutrition of animal cells in tissue culture; initial studies on a synthetic medium. Proc Soc Exp Biol Med. 1950 Jan;73(1):1–8. doi: 10.3181/00379727-73-17557. [DOI] [PubMed] [Google Scholar]
  11. Nakamura T., Aoyama K., Ichihara A. Precocious induction of glucokinase in primary cultures of postnatal rat hepatocytes. Biochem Biophys Res Commun. 1979 Nov 28;91(2):515–520. doi: 10.1016/0006-291x(79)91552-3. [DOI] [PubMed] [Google Scholar]
  12. Niemeyer H., Ureta T., Clark-Turri L. Adaptive character of liver glucokinase. Mol Cell Biochem. 1975 Feb 28;6(2):109–126. doi: 10.1007/BF01732005. [DOI] [PubMed] [Google Scholar]
  13. Parry M. J., Walker D. G. Purification and properties of adenosine 5'-triphospae-D-glucose 6-phosphotransferase from rat liver. Biochem J. 1966 May;99(2):266–274. doi: 10.1042/bj0990266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  15. Pilkis S. J. Hormonal control of hexokinase activity in animal tissues. Biochim Biophys Acta. 1970 Sep 22;215(3):461–476. doi: 10.1016/0304-4165(70)90097-8. [DOI] [PubMed] [Google Scholar]
  16. Schreiber G., Urban J., Zähringer J., Reutter W., Frosch U. The secretion of serum protein and the synthesis of albumin and total protein in regenerating rat liver. J Biol Chem. 1971 Jul 25;246(14):4531–4538. [PubMed] [Google Scholar]
  17. Schudt C. Hormonal regulation of glucokinase in primary cultures of rat hepatocytes. Eur J Biochem. 1979 Jul;98(1):77–82. doi: 10.1111/j.1432-1033.1979.tb13162.x. [DOI] [PubMed] [Google Scholar]
  18. Seglen P. O. Effects of amino acids, ammonia and leupeptin on protein synthesis and degradation in isolated rat hepatocytes. Biochem J. 1978 Aug 15;174(2):469–474. doi: 10.1042/bj1740469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seitz H. J., Lüth W., Tarnowski W. Regulation of rat liver glucokinase activity in vivo: predominant role of hepatic cyclic AMP and glucocorticoids. Arch Biochem Biophys. 1979 Jul;195(2):385–391. doi: 10.1016/0003-9861(79)90364-3. [DOI] [PubMed] [Google Scholar]
  20. Spence J. T., Pitot H. C. Hormonal regulation of glucokinase in primary cultures of adult rat hepatocytes. J Biol Chem. 1979 Dec 25;254(24):12331–12336. [PubMed] [Google Scholar]
  21. Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
  22. Suleiman S. A., Vestling C. S. Hormonal effects on the biosynthesis of lactate dehydrogenase in rat hepatocytes. J Biol Chem. 1979 Nov 10;254(21):10621–10628. [PubMed] [Google Scholar]
  23. Ureta T., Radojković J., Niemeyer H. Inhibition by catecholamines of the induction of rat liver glucokinase. J Biol Chem. 1970 Sep 25;245(18):4819–4824. [PubMed] [Google Scholar]
  24. Wakelam J. O., Allen M. B., Walker D. G. Factors that prevent the premature appearance of glucokinase in neonatal rat liver. Biochem J. 1980 Mar 15;186(3):817–826. doi: 10.1042/bj1860817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wakelam M. J., Aragon C., Gimenez C., Allen M. B., Walker D. G. Thyroid hormones and the precocious induction of hepatic glucokinase in the neonatal rat. Eur J Biochem. 1979 Oct 15;100(2):467–475. doi: 10.1111/j.1432-1033.1979.tb04190.x. [DOI] [PubMed] [Google Scholar]
  26. Wakelam M. J., Walker D. G. De novo synthesis of glucokinase in hepatocytes isolated from neonatal rats. FEBS Lett. 1980 Feb 25;111(1):115–119. doi: 10.1016/0014-5793(80)80774-5. [DOI] [PubMed] [Google Scholar]
  27. Wakelam M. J., Walker D. G. Induction of glucokinase in vitro in hepatocytes from neonatal rats [proceedings]. Biochem Soc Trans. 1980 Jun;8(3):384–385. doi: 10.1042/bst0080384. [DOI] [PubMed] [Google Scholar]
  28. Walker D. G., Holland G. The development of hepatic glucokinase in the neonatal rat. Biochem J. 1965 Dec;97(3):845–854. doi: 10.1042/bj0970845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Walker P. R., Bonney R. J., Potter V. R. Diurnal rhythms of hepatic carbohydrate metabolism during development of the rat. Biochem J. 1974 Jun;140(3):523–529. doi: 10.1042/bj1400523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weaver D. C., Barry C. D., McDaniel M. L., Marshall G. R., Lacy P. E. Molecular requirements for recognition at glucoreceptor for insulin release. Mol Pharmacol. 1979 Sep;16(2):361–368. [PubMed] [Google Scholar]
  31. Weinhouse S. Regulation of glucokinase in liver. Curr Top Cell Regul. 1976;11:1–50. [PubMed] [Google Scholar]
  32. Whitton P. D., Hems D. A. Secificity of the glucose effect on hepatic glycogen synthesis: a glucose receptor in liver. FEBS Lett. 1977 Mar 1;74(2):195–200. doi: 10.1016/0014-5793(77)80845-4. [DOI] [PubMed] [Google Scholar]
  33. Yu F. L., Feigelson P. Paper disc estimation of radioactive RNA: studies on the presence and elimination of metabolically generated artifacts from labeled purine and pyrimidine precursors. Anal Biochem. 1971 Feb;39(2):319–321. doi: 10.1016/0003-2697(71)90420-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES