Abstract
目的
探究负载焦亡抑制剂的活性氧响应性自组装纳米胶束对糖尿病大鼠全层皮肤缺损的影响。
方法
采用实验研究方法。用纳米胶束聚乙二醇-嵌段-聚丙烯硫醚(PEG-b-PPS)包封核苷酸结合寡聚化结构域(NOD)1/2抑制剂(NOD-IN-1), 将所得产物称为PEPS@NOD-IN-1。利用透射电子显微镜和粒度分析仪分别观测PEG-b-PPS与PEPS@NOD-IN-1的形貌和水合粒径, 用酶标仪测量并计算PEPS@NOD-IN-1对NOD-IN-1的包封率和载药率以及PEPS@NOD-IN-1在单纯磷酸盐缓冲液(PBS)和含过氧化氢的PBS中40 h内对NOD-IN-1的累积释放率, 样本数均为3。取24只6~7周龄雄性SD大鼠, 通过注射链脲佐菌素的方法诱导1型糖尿病, 在每只大鼠背部制作6个全层皮肤缺损创面, 按随机数字表法将致伤大鼠分为进行相应处理的PBS组、NOD-IN-1组、PEG-b-PPS组、PEPS@NOD-IN-1组, 每组6只。伤后3、7、12 d观察创面愈合情况并计算创面愈合率;伤后3 d, 采用免疫荧光法检测创面组织中活性氧水平;伤后7 d, 利用苏木精-伊红染色评估创面肉芽组织厚度, 采用实时荧光定量反转录PCR法检测创面组织中NOD1、NOD2的mRNA表达, 采用蛋白质印迹法检测创面组织中NOD1、NOD2、GSDMD-N端的蛋白表达。前述指标均各取各组不同鼠的共6个创面检测。另取PBS组和PEPS@NOD-IN-1组大鼠伤后7 d创面组织(各3个样本), 利用高通量测序技术平台进行转录组测序, 筛选出PEPS@NOD-IN-1组相较于PBS组显著下调的差异表达基因(DEG), 进行京都基因与基因组百科全书(KEGG)富集分析;制作焦亡相关通路NOD样受体通路DEG热图;通过STRING数据库对热图中的DEG进行蛋白质-蛋白质相互作用(PPI)分析, 筛选PEPS@NOD-IN-1调控NOD样受体通路的关键基因。对数据行重复测量方差分析、单因素方差分析、Tukey检验。
结果
PEG-b-PPS与PEPS@NOD-IN-1均为大小较为均一的球形结构, 水合粒径分别为(134.2±3.3)、(143.1±2.3)nm。PEPS@NOD-IN-1对NOD-IN-1的包封率为(60±5)%、载药率为(15±3)%。PEPS@NOD-IN-1在单纯PBS中对NOD-IN-1的释放较缓慢, 40 h累积释放率仅为(12.4±2.3)%;PEPS@NOD-IN-1在含过氧化氢的PBS中10 h内对NOD-IN-1的释放十分迅速, 10 h累积释放率已达(90.1±3.6)%。伤后3、7 d, 4组大鼠创面均逐渐愈合, PEPS@NOD-IN-1组愈合情况优于其余3组;伤后12 d, PBS组创面结痂面积较大, NOD-IN-1组、PEG-b-PPS组创面上皮化明显, PEPS@NOD-IN-1组创面接近完全上皮化。与PBS组、NOD-IN-1组及PEG-b-PPS组比较, PEPS@NOD-IN-1组大鼠伤后7、12 d创面愈合率均显著增高(P<0.05), 伤后3 d创面组织中活性氧水平显著下降(P<0.05), 伤后7 d创面肉芽组织厚度显著增厚(P<0.05), 伤后7 d创面组织中NOD1、NOD2的mRNA表达以及NOD1、NOD2、GSDMD-N端的蛋白表达均显著下降(P<0.05)。KEGG通路分析显示, PEPS@NOD-IN-1组相较于PBS组显著下调的DEG在NOD样受体、缺氧诱导因子、丝裂原活化蛋白激酶和肿瘤坏死因子(TNF)通路方面显著富集。在NOD样受体通路的DEG热图中, 可见调控细胞焦亡的基因主要涉及NOD1、NOD2、NOD样受体热蛋白结构域相关蛋白3、Jun、信号转导及转录激活因子1(STAT1)、TNF-α诱导蛋白3。PPI结果显示, NOD1、NOD2、STAT1为PEPS@NOD-IN-1调控NOD样受体通路的关键基因。
结论
PEPS@NOD-IN-1能下调创面局部活性氧水平及细胞焦亡关键调节因子NOD1、NOD2、GSDMD-N端的表达, 进而促进糖尿病大鼠全层皮肤缺损创面修复;PEPS@NOD-IN-1还可显著下调创面的焦亡、炎症及缺氧相关通路, 通过下调关键基因NOD1、NOD2、STAT1调控NOD样受体通路。
Keywords: 糖尿病, 1型; 材料试验; 活性氧; 细胞焦亡; 创面修复; 转录组测序
Abstract
Objective
To investigate the influence of reactive oxygen species (ROS) responsive self-assembled nanomicelle loaded with pyroptosis inhibitor on full-thickness skin defects in diabetic rats.
Methods
Experimental research methods were employed. A nucleotide-binding oligomerization domain (NOD) 1/2 inhibitor (NOD-IN-1) was encapsulated with nanomicelle polyethylene glycol-block-polypropylene sulfide (PEG-b-PPS), and the resulting product was called PEPS@NOD-IN-1. The morphology and hydration particle size of PEG-b-PPS and PEPS@NOD-IN-1 were observed by transmission electron microscope and particle size analyzer, respectively, and the encapsulation rate and drug loading rate of PEPS@NOD-IN-1 to NOD-IN-1 and the cumulative release rate of NOD-IN-1 by PEPS@NOD-IN-1 in phosphate buffer solution (PBS) alone and hydrogen peroxide-containing PBS within 40 h were measured and calculated by microplate reader, and the sample number was 3. Twenty-four male Sprague-Dawley rats aged 6-7 weeks were injected with streptozotocin to induce type 1 diabetes mellitus. Six full-thickness skin defect wounds were made on the back of each rat. The injured rats were divided into PBS group, NOD-IN-1 group, PEG-b-PPS group, and PEPS@NOD-IN-1 group with corresponding treatment according to the random number table, with 6 rats in each group. The wound healing was observed on post injury day (PID) 3, 7, and 12, and the wound healing rate was calculated. The ROS levels in wound tissue were detected by immunofluorescence method on PID 3. On PID 7, the granulation tissue thickness in wound was assessed by hematoxylin-eosin staining, the mRNA expressions of NOD1 and NOD2 were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction, and the protein expressions of NOD1, NOD2, and GSDMD-N terminals were detected by Western blotting. Six wounds from different rats in each group were taken for detection of the above indicators. Wound tissue (3 samples per group) was taken from rats in PBS group and PEPS@NOD-IN-1 group on PID 7, and transcriptome sequencing was performed using high-throughput sequencing technology platform. Differentially expressed genes (DEGs) significantly down-regulated in PEPS@NOD-IN-1 group as compared with PBS group were screened, and the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The DEG heatmap of the NOD-like receptor pathway, a pyroptosis-related pathway, was made. Protein-protein interaction (PPI) analysis of DEGs in heatmap was performed through the STRING database to screen key genes of PEPS@NOD-IN-1 regulating the NOD-like receptor pathway. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and Tukey test.
Results
PEG-b-PPS and PEPS@NOD-IN-1 were in spherical structures of uniform size, with hydration particle sizes of (134.2±3.3) and (143.1±2.3) nm, respectively. The encapsulation rate of PEPS@NOD-IN-1 to NOD-IN-1 was (60±5)%, and the drug loading rate was (15±3)%. The release of NOD-IN-1 from PEPS@NOD-IN-1 in PBS alone was slow, and the cumulative release rate at 40 h was only (12.4±2.3)%. The release of NOD-IN-1 from PEPS@NOD-IN-1 in hydrogen peroxide-containing PBS within 10 h was very rapid, and the cumulative release rate at 10 h reached (90.1±3.6)%. On PID 3 and 7, the wounds of rats in the four groups were gradually healed, and the healing in PEPS@NOD-IN-1 group was better than that in the other three groups. On PID 12, the wound scab area in PBS group was large, the wound epithelialization in NOD-IN-1 group and PEG-b-PPS group was obvious, and the wound in PEPS@NOD-IN-1 group was close to complete epithelialization. Compared with those in PBS group, NOD-IN-1 group, and PEG-b-PPS group, the wound healing rates on PID 7 and 12 in PEPS@NOD-IN-1 group were significantly increased (P<0.05), the level of ROS in wound tissue on PID 3 was significantly decreased (P<0.05), the thickness of granulation tissue in wound on PID 7 was significantly thickened (P<0.05), and the mRNA expressions of NOD1 and NOD2 and the protein expressions of NOD1, NOD2, and GSDMD-N terminals in wound tissue on PID 7 were significantly decreased (P<0.05). KEGG pathway analysis showed that DEGs significantly down-regulated in PEPS@NOD-IN-1 group as compared with PBS group were significantly enriched in NOD-like receptors, hypoxia-inducible factors, mitogen-activated protein kinases, and tumor necrosis factor (TNF) pathways. In the DEG heatmap of NOD-like receptor pathway, the genes regulating pyroptosis mainly involved NOD1, NOD2, NOD-like receptor thermoprotein domain-related protein 3, Jun, signal transduction and transcriptional activator 1 (STAT1), TNF-α-induced protein 3. The PPI results showed that NOD1, NOD2, and STAT1 were the key genes of PEPS@NOD-IN-1 regulating the NOD-like receptor pathway.
Conclusions
PEPS@NOD-IN-1 can down-regulate the level of local ROS in wounds and the expression of NOD1, NOD2, and GSDMD-N terminals, the key regulators of pyroptosis, thereby promoting the repair of full-thickness skin defect wounds in diabetic rats. PEPS@NOD-IN-1 can also significantly down-regulate the pyroptosis, inflammation, and hypoxia-related pathways of wounds, and regulate NOD-like receptor pathways by down-regulating key genes NOD1, NOD2, and STAT1.
Keywords: Diabetes mellitus, type 1; Materials testing; Reactive oxygen species; Pyroptosis; Wound repair; Transcriptome sequencing
慢性创面因反复发作, 难以愈合, 严重影响患者的功能和生活质量, 甚至导致截肢或危及生命[1-2]。局部失控性高炎症反应被认为是形成慢性创面的重要原因之一[3]。一方面, 持续、大量积聚的活性氧会引起功能细胞如表皮细胞、Fb、血管内皮细胞等脂质过氧化[4]、蛋白质[5]和酶羰基化[6], 造成细胞损伤, 进而激活核因子κB通路等炎症相关通路[7], 产生炎症因子并使其积聚在创面局部。另一方面, 组织受损后易被细菌、病毒侵入, 导致核苷酸结合寡聚化结构域(NOD)样受体(主要包括NOD1、NOD2)过度激活下游胱天蛋白酶-1[8], 使细胞表面形成孔洞, 从而造成大量细胞焦亡, 并释放炎症因子IL-1β和IL-18等而加剧炎症, 形成创面与炎症的恶性循环[9-11]。
目前, 大量研究开发和设计了调控过高活性氧水平的生物制剂和功能材料, 但因忽视了细胞焦亡与创面失控性炎症的级联或放大效应, 导致材料应用后炎症控制不佳、创面迁延不愈[12-13]。而焦亡抑制剂在直接使用时, 因为药物暴释及半衰期短的问题[8, 14], 不易在创面长期保持足够有效浓度。纳米胶束作为一种超微颗粒, 具有良好的细胞和组织生物相容性, 在体内不易被作为异物排斥[8, 15];且该材料具有良好的缓控释小分子药物及靶向特性等优点, 是一种理想的药物载体[16-17]。因此, 本研究利用具有可清除过多活性氧功能的聚乙二醇-嵌段-聚丙烯硫醚(PEG-b-PPS)和可抑制细胞焦亡的NOD1/2抑制剂(NOD-IN-1)制备新型材料, 分析材料性质并观察其对糖尿病大鼠全层皮肤缺损的影响, 拟为慢性创面提供一种新的治疗思路。
1. 材料与方法
本研究经陆军军医大学(第三军医大学)动物伦理委员会审批通过, 批号:AMUWEC20203800。
1.1. 动物及主要试剂与仪器来源
30只6~7周龄健康无特殊病原体级、体重200~240 g的雄性SD大鼠购自陆军军医大学(第三军医大学)实验动物中心, 许可证号:SCXK(渝)2017-0002。
1,8-二氮杂双环、硫化丙烯、氨基官能化的甲氧基聚乙二醇氨基购自西安瑞喜生物科技有限公司, 四氢呋喃、二氯甲烷、4-二甲氨基吡啶(DMAP)和N-(3-二甲基氨基丙基)-N′-乙基碳二亚胺盐酸盐(EDCI)购自上海阿拉丁生化科技股份有限公司, NOD-IN-1购自美国Selleck公司, 链脲佐菌素(STZ)购自上海麦克林生化科技股份有限公司, 活性氧荧光探针二氢乙锭购自美国Sigma公司, PCR引物购自北京擎科生物科技有限公司, RNA反转录试剂盒及实时荧光定量PCR试剂盒购自日本Takara公司, 兔抗大鼠NOD1、NOD2、GSDMD-N端多克隆抗体及兔抗大鼠β肌动蛋白单克隆抗体购自艾比玛特医药科技(上海)有限公司, 辣根过氧化物酶(HRP)标记的山羊抗兔IgG多克隆抗体、含封片剂的4′,6-二脒基-2-苯基吲哚(DAPI)购自上海碧云天生物技术有限公司。
H-7650型透射电子显微镜(TEM)购自日本日立公司, 马尔文2000型动态光散射粒度分析仪购自英国马尔文仪器有限公司, M2e型多波长酶标仪购自美国Molecular Devices公司, ChemiDocTMXRS型成像系统、Bio-rad CFX Connect型实时PCR检测仪购自美国Bio-Rad公司, LSM780型激光扫描共聚焦显微镜购自德国Zeiss公司。
1.2. 材料制备及表征
1.2.1. PEG-b-PPS的制备
按照文献[16], 先用1,8-二氮杂双环、四氢呋喃、1-丁烷硫醇、硫化丙烯、碘乙酸、冷甲醇制得无色黏性聚合物聚苯硫醚-羧基, 再用氨基官能化的甲氧基聚乙二醇氨基、二氯甲烷、聚苯硫醚-羧基、EDCI、DMAP、乙醚制得粉末状纳米胶束PEG-b-PPS。
1.2.2. PEPS@NOD-IN-1的制备及其与PEG-b-PPS的表征
制备:将5 mg NOD-IN-1和20 mg PEG-b-PPS充分溶于2 mL二甲基亚砜中, 在剧烈搅拌条件下慢慢滴入20 mL去离子水。将所得溶液用透析袋(截留分子量=8×103)在4 ℃条件下透析2 d, 每4小时更换1次去离子水, 除去溶剂和未包裹的抑制剂, 得到负载NOD-IN-1的PEG-b-PPS纳米胶束溶液。将纳米胶束溶液冷冻干燥, 得到粉末状产物, 称之为PEPS@NOD-IN-1。
表征:(1)取PEG-b-PPS、PEPS@NOD-IN-1粉末各10 mg, 分别溶于10 mL去离子水中, 滴到铜网上烘干后, 于20 000倍TEM下观察形貌。(2)取PEG-b-PPS、PEPS@NOD-IN-1粉末各10 mg, 分别溶于10 mL PBS中, 用粒度分析仪检测水合粒径。(3)取10 mg PEPS@NOD-IN-1粉末, 溶于10 mL PBS中, 参照文献[18], 采用酶标仪测量波长620 nm处的吸光度值(以此计算NOD-IN-1浓度), 计算PEPS@NOD-IN-1对NOD-IN-1的包封率和载药率。包封率=(溶液中NOD-IN-1总质量-上清液中NOD-IN-1总质量)÷溶液中NOD-IN-1总质量×100%, 载药率=(溶液中NOD-IN-1总质量-上清液中NOD-IN-1总质量)÷溶液中PEG-b-PPS总质量×100%。结果展示1个样本的数据。(4)用PBS将PEPS@NOD-IN-1粉末制成质量浓度为1 g/mL的溶液, 在单纯PBS和含终物质的量浓度200 μmol/L过氧化氢的PBS中, 参照文献[19]方法, 于处理1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40 h时, 用酶标仪测定波长620 nm处的吸光度值(以此计算NOD-IN-1浓度), 计算NOD-IN-1累积释放率。累积释放率=(1-残留NOD-IN-1浓度÷初始NOD-IN-1浓度)×100%。各指标样本数均为3。
1.3. PEPS@NOD-IN-1对糖尿病创面愈合的影响
1.3.1. 糖尿病模型的建立
取30只大鼠, 每天腹腔注射质量浓度3 mg/mL STZ 30 mg/kg, 连续注射6 d。注射完成后每天监测血糖水平, 将血糖水平持续2周>16.7 mmol/L的24只大鼠视为1型糖尿病模型造模成功, 纳入后续研究。
1.3.2. 糖尿病创面模型建立及分组处理和愈合情况观察
将糖尿病大鼠常规麻醉备皮, 于每只糖尿病大鼠背部制造6个直径为10 mm的全层皮肤缺损创面。伤后即刻, 采用随机数字表法将致伤大鼠分为PBS组、NOD-IN-1组、PEG-b-PPS组、PEPS@NOD-IN-1组(每组6只), 其创面分别滴加120 μL PBS、质量浓度0.15 μg/mL NOD-IN-1、质量浓度1 mg/mL PEG-b-PPS、质量浓度1 mg/mL PEPS@NOD-IN-1(内含18 μg NOD-IN-1), 并用无菌敷贴覆盖。隔天换药1次, 更换滴加制剂及敷贴。
每组选择6个来自不同大鼠的创面(下称不同鼠源创面), 于伤后3、7、12 d观察创面愈合情况(以完全上皮化为愈合判断标准), 用Image J 2.5.0图像分析软件(美国国立卫生研究院)分析创面面积, 计算创面愈合率。创面愈合率=(伤后即刻创面面积-伤后其他时间点创面面积)÷伤后即刻创面面积×100%。
1.3.3. 创面愈合相关指标及焦亡相关指标的检测
1.3.3.1. 创面肉芽组织厚度及活性氧水平
伤后7 d, 每组取6个不同鼠源创面组织, 常规制作石蜡切片, 进行HE染色, 于20倍光学显微镜下观察并测量肉芽组织厚度。
伤后3 d, 每组取6个不同鼠源创面组织, 常规制作冰冻切片, 用25 μmol/L二氢乙锭工作液染色30 min后, 用含封片剂的DAPI封片, 于120倍激光扫描共聚焦显微镜下观察活性氧表达(阳性染色为红色)。用Image J 2.5.0图像分析软件分析创面活性氧水平, 以PBS组结果为1, 其余组与其比值为各组的相对值(后同)。
1.3.3.2. 焦亡相关指标mRNA和蛋白表达
伤后7 d, 每组取6个不同鼠源创面组织, 提取组织总RNA后, 采用实时荧光定量RT-PCR法检测焦亡相关指标mRNA表达。NOD1上游引物为5'-CAATGAGCAGGGTGAGACCA-3'、下游引物为5'-AGA-AGAATTTGACCCCTGCGT-3', 产物大小为122 bp;NOD2上游引物为5'-GTGTCTGCTCAGTCTCGCTT-3'、下游引物为5'-ACAGTGTCCGCATCGTCATT-3', 产物大小为197 bp;GAPDH上游引物为5'-GAAGGTCGGTGTGAACGGAT-3'、下游引物为5'-CCCATTTGATGTTAGCGGGAT-3', 产物大小为251 bp。以GAPDH为内参照, 通过基于Δ循环阈值(Ct)的2-ΔΔCt法对NOD1、NOD2的mRNA表达进行定量。
伤后7 d, 每组取6个不同鼠源创面组织, 提取组织总蛋白后, 采用蛋白质印迹法检测焦亡相关指标蛋白表达。一抗为兔抗大鼠NOD1、NOD2、GSDMD-N端多克隆抗体及兔抗大鼠β肌动蛋白单克隆抗体(稀释比均为1∶1 000), 二抗为HRP标记的山羊抗兔IgG多克隆抗体(稀释比为1∶3 000)。用成像系统对蛋白质条带进行成像后, 用Image J 2.5.0图像分析软件分析条带灰度值。以β肌动蛋白为内参照, 计算NOD1、NOD2、GSDMD-N端的蛋白表达量。
1.4. PEPS@NOD-IN-1治疗后的转录组分析
取PBS组和PEPS@NOD-IN-1组大鼠伤后7 d创面组织(各3个样本), 送上海美吉生物有限公司, 利用高通量测序技术平台进行转录组测序, 筛选出PEPS@NOD-IN-1组相较于PBS组显著下调[P<0.05、log2(差异倍数)≤-2]的差异表达基因(DEG), 进行京都基因与基因组百科全书(KEGG)富集分析。进一步挑选焦亡相关通路NOD样受体通路DEG制作热图, 再将热图中的DEG输入STRING数据库(https://string-db.org/)进行蛋白质-蛋白质相互作用(PPI)分析,筛选PEPS@NOD-IN-1调控NOD样受体通路的关键基因。
1.5. 统计学处理
采用SPSS 18.0统计软件进行数据分析, 计量资料数据均符合正态分布, 以x±s表示, 多组间多个时间点总体比较采用重复测量方差分析, 单一时间点指标组间总体比较采用单因素方差分析, 组间两两比较进行Tukey检验(软件自动略去该统计量值)并对P值进行Bonferroni校正, P<0.05为差异有统计学意义。
2. 结果
2.1. PEG-b-PPS和PEPS@NOD-IN-1表征
PEG-b-PPS与PEPS@NOD-IN-1均为大小较为均一的球形结构, 水合粒径分别为(134.2±3.3)、(143.1±2.3)nm。PEPS@NOD-IN-1对NOD-IN-1的包封率为(60±5)%、载药率为(15±3)%。PEPS@NOD-IN-1在单纯PBS中对NOD-IN-1的释放较缓慢, 40 h累积释放率仅为(12.4±2.3)%;PEPS@NOD-IN-1在含过氧化氢的PBS中10 h内对NOD-IN-1的释放十分迅速, 10 h累积释放率已达(90.1±3.6)%。见图 1。
图 1.
PEG-b-PPS和PEPS@NOD-IN-1的表征。1A、1B.分别为PEG-b-PPS、PEPS@NOD-IN-1形貌, 均为大小较为均一的球形结构 透射电子显微镜×20 000;1C.PEG-b-PPS和PEPS@NOD-IN-1的水合粒径;1D.PEPS@NOD-IN-1在单纯PBS和含过氧化氢的PBS中40 h内对NOD-IN-1的释放曲线(样本数为3, x±s)
注:PEG-b-PPS为聚乙二醇-嵌段-聚丙烯硫醚, NOD-IN-1为核苷酸结合寡聚化结构域1/2抑制剂, PEPS@NOD-IN-1为用PEG-b-PPS包封NOD-IN-1所得, PBS为磷酸盐缓冲液;图1C为横坐标经过lg处理的数据形成的描记图
2.2. PEPS@NOD-IN-1对糖尿病创面愈合的影响
2.2.1. 创面大体愈合情况
伤后3 d, PBS组大鼠创面基底仍有少许湿润, 其余3组大鼠创面均干燥。伤后7 d, PBS组大鼠创面干燥、颜色深红, NOD-IN-1组、PEG-b-PPS组大鼠创面开始结痂, PEPS@NOD-IN-1组大鼠创面结痂面积小于NOD-IN-1组和PEG-b-PPS组。伤后12 d, PBS组大鼠创面结痂面积较大, 基底部呈暗红色;NOD-IN-1组、PEG-b-PPS组大鼠创面结痂面积较伤后7 d缩小, 上皮化明显;PEPS@NOD-IN-1组大鼠创面结痂面积变小, 上皮化接近完全, 接近完全愈合。见图 2。
图 2.
4组糖尿病全层皮肤缺损大鼠伤后各时间点创面大体愈合情况。2A、2B、2C.分别为PBS组伤后3、7、12 d创面, 愈合较慢;2D、2E、2F和2G、2H、2I.分别为NOD-IN-1组和PEG-b-PPS组伤后3、7、12 d创面, 图2D、2G创面较图2A干燥, 图2E、2H创面开始结痂且创面面积稍小于图2B, 图2F、2I创面结痂面积均小于图2C;2J、2K、2L.分别为PEPS@NOD-IN-1组伤后3、7、12 d创面, 图2J创面较图2A干燥, 图2K创面面积明显小于图2B、2E和2H, 图2L创面上皮化接近完全且基本无痂皮
注:创面上方白色硅胶环为参照物, 直径为10 mm;PBS为磷酸盐缓冲液, NOD-IN-1为核苷酸结合寡聚化结构域1/2抑制剂, PEG-b-PPS为聚乙二醇-嵌段-聚丙烯硫醚, PEPS@NOD-IN-1为用PEG-b-PPS包封NOD-IN-1所得

2.2.2. 创面愈合率
与PBS组、NOD-IN-1组及PEG-b-PPS组比较, PEPS@NOD-IN-1组大鼠伤后7、12 d创面愈合率均显著增高(P<0.001)。见表 1。
表 1.
4组糖尿病全层皮肤缺损大鼠伤后各时间点创面愈合率比较(%, x±s)
| 组别 | 样本数 | 3 d | 7 d | 12 d |
| 注:PBS为磷酸盐缓冲液, NOD-IN-1为核苷酸结合寡聚化结构域1/2抑制剂, PEG-b-PPS为聚乙二醇-嵌段-聚丙烯硫醚, PEPS@NOD-IN-1为用PEG-b-PPS包封NOD-IN-1所得;处理因素主效应, F=68.20, P<0.001;时间因素主效应, F=396.80, P<0.001;两者交互作用, F=14.33, P<0.001;与PEPS@NOD-IN-1组比较, aP<0.05 | ||||
| PBS组 | 6 | 11.5±3.4 | 33.8±4.1a | 43.7±5.2a |
| NOD-IN-1组 | 6 | 14.8±1.9 | 39.7±2.8a | 49.2±3.4a |
| PEG-b-PPS组 | 6 | 14.3±2.5 | 42.8±3.7a | 51.3±4.6a |
| PEPS@NOD-IN-1组 | 6 | 15.7±4.2 | 63.2±3.8 | 82.4±4.9 |
| F值 | 1.09 | 37.15 | 43.99 | |
| P值 | 0.068 | <0.001 | <0.001 | |
2.3. 创面愈合相关指标及焦亡相关指标
2.3.1. 肉芽组织厚度及活性氧水平
PBS组、NOD-IN-1组、PEG-b-PPS组及PEPS@NOD-IN-1组大鼠伤后7 d创面肉芽组织厚度分别为(0.25±0.04)、(0.51±0.05)、(0.53±0.04)、(1.09±0.06)mm, 伤后3 d创面组织中活性氧水平分别为1.000±0.032、0.813±0.046、0.756±0.031、0.132±0.025, 总体比较, 差异均有统计学意义(F值分别为293.90、448.90, P<0.001)。PEPS@NOD-IN-1组大鼠创面肉芽组织厚度显著厚于其余3组(P值均<0.001), 创面组织中活性氧水平显著低于其余3组(P值均<0.001)。见图 3。
图 3.
4组糖尿病全层皮肤缺损大鼠伤后7 d创面肉芽组织厚度及伤后3 d创面活性氧水平。3A、3B、3C、3D.分别为PBS组、NOD-IN-1组、PEG-b-PPS组和PEPS@NOD-IN-1组伤后7 d肉芽组织厚度(黑色双箭头的长度)情况, 图3D肉芽组织厚度较图3A、3B和3C明显增厚 苏木精-伊红×20;3E、3F、3G、3H.分别为PBS组、NOD-IN-1组、PEG-b-PPS组和PEPS@NOD-IN-1组伤后3 d活性氧(红色)水平, 图3H活性氧水平显著低于图3E、3F、3G 二氢乙锭+4', 6-二脒基-2-苯基吲哚×120
注:PBS为磷酸盐缓冲液, NOD-IN-1为核苷酸结合寡聚化结构域1/2抑制剂, PEG-b-PPS为聚乙二醇-嵌段-聚丙烯硫醚, PEPS@NOD-IN-1为用PEG-b-PPS包封NOD-IN-1所得
2.3.2. 焦亡相关指标mRNA和蛋白表达
伤后7 d, 与PBS组、NOD-IN-1组和PEG-b-PPS组比较, PEPS@NOD-IN-1组大鼠创面组织中NOD1、NOD2的mRNA表达以及NOD1、NOD2、GSDMD-N端的蛋白表达均显著下降(P<0.001), 见表 2、图 4。
表 2.
4组糖尿病全层皮肤缺损大鼠伤后7 d创面组织中焦亡相关指标mRNA和蛋白表达比较(x±s)
| 组别 | 样本数 | mRNA | 蛋白 | ||||
| NOD1 | NOD2 | NOD1 | NOD2 | GSDMD-N端 | |||
| 注:PBS为磷酸盐缓冲液, NOD-IN-1为核苷酸结合寡聚化结构域(NOD)1/2抑制剂, PEG-b-PPS为聚乙二醇-嵌段-聚丙烯硫醚, PEPS@NOD-IN-1为用PEG-b-PPS包封NOD-IN-1所得;与PEPS@NOD-IN-1组比较, aP<0.05 | |||||||
| PBS组 | 6 | 1.000±0.045a | 1.000±0.053a | 1.00±0.04a | 1.00±0.03a | 1.00±0.04a | |
| NOD-IN-1组 | 6 | 0.863±0.052a | 0.783±0.067a | 0.72±0.04a | 0.71±0.06a | 0.76±0.07a | |
| PEG-b-PPS组 | 6 | 0.834±0.025a | 0.741±0.076a | 0.76±0.05a | 0.68±0.03a | 0.69±0.13a | |
| PEPS@NOD-IN-1组 | 6 | 0.132±0.031 | 0.153±0.024 | 0.15±0.03 | 0.16±0.04 | 0.21±0.05 | |
| F值 | 1 235.23 | 698.73 | 897.79 | 750.64 | 219.73 | ||
| P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
图 4.
蛋白质印迹法检测4组糖尿病全层皮肤缺损大鼠伤后7 d创面组织中焦亡相关指标蛋白表达
注:条带上方1、2、3、4分别指示磷酸盐缓冲液组、核苷酸结合寡聚化结构域(NOD)1/2抑制剂(NOD-IN-1)组、聚乙二醇-嵌段-聚丙烯硫醚(PEG-b-PPS)组和PEPS@NOD-IN-1组, PEPS@NOD-IN-1为用PEG-b-PPS包封NOD-IN-1所得

2.4. PEPS@NOD-IN-1治疗后的转录组分析
2.4.1. KEGG及热图分析
对PEPS@NOD-IN-1组相较于PBS组显著下调的1 248个DEG进行KEGG富集分析, 得出这些DEG在NOD样受体、缺氧诱导因子、MAPK和TNF通路方面显著富集。在NOD样受体通路的DEG热图中, 可见调控细胞焦亡的基因主要涉及NOD1及NOD2、NOD样受体热蛋白结构域相关蛋白3(NLRP3)、Jun、信号转导及转录激活因子1(STAT1)、TNF-α诱导蛋白3。见图 5。
图 5.
PEPS@NOD-IN-1组糖尿病全层皮肤缺损大鼠伤后7 d创面相较于PBS组显著下调的DEG的KEGG富集分析与NOD样受体通路DEG热图。5A.KEGG富集分析中排名前20的通路;5B.NOD样受体通路DEG热图
注:DEG为差异表达基因, PBS为磷酸盐缓冲液, PEPS@NOD-IN-1为用聚乙二醇-嵌段-聚丙烯硫醚包封核苷酸结合寡聚化结构域(NOD)1/2抑制剂(NOD-IN-1)所得, KEGG为京都基因与基因组百科全书;图5B中左侧3列为PBS组样本, 右侧3列为PEPS@NOD-IN-1组样本;MAPK为丝裂原活化蛋白激酶, TNF为肿瘤坏死因子, OAS为寡聚腺苷酸合成酶, NAIP2为神经元凋亡抑制蛋白2, NLRP3为NOD样受体热蛋白结构域相关蛋白3, GBP为鸟苷酸结合蛋白, IRF为干扰素调节因子, IFI为干扰素激活基因, STAT为信号转导及转录激活因子, CCL为趋化因子配体, GABARAPL1为γ氨基丁酸受体相关蛋白样1, TRAF为TNF受体相关因子, RIPK2为受体相互作用丝氨酸/苏氨酸激酶2, ITPR2为肌醇1,4,5-三磷酸受体2型, IKBKG为K轻链多肽抑制基因, TLR4为Toll样受体4, NAMPT为烟酰胺磷酸核糖转移酶, TNFAIP3为TNF-α诱导蛋白3

2.4.2. PPI分析
PPI结果显示, NOD1、NOD2和STAT1为PEPS@NOD-IN-1调控NOD样受体通路的关键基因, 见图 6。
图 6.
PEPS@NOD-IN-1组糖尿病全层皮肤缺损大鼠伤后7 d创面相较于PBS组显著下调的NOD样受体通路差异表达基因的蛋白质-蛋白质相互作用分析中存在相互作用者
注:PEPS@NOD-IN-1为用聚乙二醇-嵌段-聚丙烯硫醚包封核苷酸结合寡聚化结构域(NOD)1/2抑制剂(NOD-IN-1)所得, PBS为磷酸盐缓冲液;一个圆圈代表一个基因, 圆圈之间的连线代表相互作用, 连线越多说明相互作用越强

3. 讨论
创面的修复要经历止血期、炎症期、增殖期、重塑期4个阶段, 而大量的活性氧累积和细胞焦亡将造成功能细胞发生坏死和组织损伤[20], 使得创面长期处于炎症期, 导致创面迁延不愈。创面过高的活性氧水平及细胞焦亡是造成其长期处于高炎症状态的重要原因[12-13, 21-23], 活性氧与细胞焦亡存在相互影响, 过高的活性氧水平是细胞发生焦亡的始动因素[24], 造成细胞焦亡小体的自组装及下游炎症通路的激活, 导致细胞发生焦亡, 而细胞焦亡后所释放的一系列炎症因子同样也会加重创面细胞进一步产生活性氧, 以此往复, 大量炎症因子积聚在创面微环境中, 造成创面炎症长期处于失控状态[11, 25]。因此, 同时调控慢性创面过度的活性氧及细胞焦亡对于创面炎症水平的控制及组织修复显得十分重要。
有文献表明, 疏水性聚丙烯硫醚可能会与过量的活性氧发生反应而变成亲水性, 从而迫使胶束破裂, 导致药物缓慢释放, 增加药物半衰期[26-28];而NOD-IN-1是NOD样受体NOD1和NOD2的有效混合抑制剂[29]。本研究用PEG-b-PPS包封NOD-IN-1, 并将其用于清除创面中过度的活性氧和抑制细胞焦亡, 有望达到协同调控促炎因子的作用。PEG-b-PPS与PEPS@NOD-IN-1的形貌相近。水合粒径结果显示, PEPS@NOD-IN-1的大小要稍大于PEG-b-PPS, 这是由于包封疏水药物后胶束内部的疏水部分和药物之间存在非共价键作用力[30]。所得纳米胶束对抑制剂的载药率均值为15%、包封率均值为60%, 表现出比常规胶束更好的药物包裹性能[31];纳米胶束在含过氧化氢条件下迅速释放焦亡抑制剂NOD-IN-1, 在10 h内药物释放率均值达90%, 证明纳米载体具有活性氧响应释放的性能且释放效率高。
在糖尿病创面实验中, 本研究显示PEPS@NOD-IN-1可显著加速创面愈合, 使创面面积显著缩小, 初步证明其在促进糖尿病创面愈合中的优越性。接着在创面炎症活性氧的荧光染色结果中可以看出, PEPS@NOD-IN-1组较NOD-IN-1组、PEG-b-PPS组有更低的活性氧表达, 表明PEPS@NOD-IN-1具有更强的活性氧清除能力, 这可能是由于其同时还具有抑制细胞焦亡释放炎症因子的能力, 使得创面具有更低的炎症水平, 一定程度上减轻了炎症因子对活性氧的上调。通过测量伤后7 d创面中NOD1、NOD2的mRNA表达了解到, PEPS@NOD-IN-1能够显著降低细胞焦亡相关基因NOD1、NOD2的激活;此外, PEPS@NOD-IN-1可显著抑制焦亡相关指标NOD1、NOD2、GSDMD-N端的蛋白表达, 从而避免下游胱天蛋白酶-1的过度激活和炎症因子释放, 很大程度上降低细胞的焦亡水平。最后, 由转录组KEGG富集分析结果可见, 细胞焦亡通路NOD样受体通路显著下调, 且创面中的缺氧通路显著下调, 推测是由于创面失控性炎症得到控制后降低了多种消耗氧气的酶的表达, 从而改善了创面的缺氧环境[32];而TNF通路显著下调可能是由NOD1和NOD2的抑制导致的[33-34]。在NOD样受体通路基因的热图及PPI分析中可以看出, PEPS@NOD-IN-1不仅可以下调调控NOD样受体通路的关键基因NOD1、NOD2、STAT1, 也可以显著下调焦亡小体NLRP3的表达, 推测是由于材料不仅可以特异性清除NOD1和NOD2的表达, 还可以通过其活性氧清除能力降低活性氧下游的多种炎症及焦亡相关分子的表达[35-36]。
综上所述, 本研究通过构建具有清除创面过高活性氧水平和抑制细胞焦亡双重功能的纳米胶束, 首次提出在慢性创面中同时解决过高的活性氧和细胞焦亡所引发的创面失控性炎症的治疗策略, 改善了创面过高的活性氧水平和细胞焦亡导致的失控性炎症, 促进创面修复, 大大加速了创面愈合进程, 并为慢性创面中细胞焦亡的研究奠定了理论基础。
Funding Statement
国家自然科学基金国际(地区)合作与交流项目(81920108022)
International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China (81920108022)
本文亮点
(1) 制备了具有清除活性氧及抑制细胞焦亡作用的纳米胶束, 并证实该纳米胶束可在高活性氧水平条件下成功响应并释放焦亡抑制剂——核苷酸结合寡聚化结构域(NOD)1/2抑制剂。
(2) 证实在糖尿病大鼠全层皮肤缺损创面中, 同时清除活性氧及抑制细胞焦亡可显著促进创面愈合。
(3) 在基因水平证实, 前述纳米胶束可显著下调创面的焦亡、炎症及缺氧相关通路, 调控NOD样受体通路, 为开发针对慢性创面的炎症调控的药物提供了一种新的思路。
利益冲突 所有作者均声明不存在利益冲突
作者贡献声明 欧泽林、王珏:实验操作、论文撰写;时荣:数据整理、统计学分析;邓君、刘毅、罗高兴:研究指导、论文修改以及经费支持
References
- 1.Matoori S, Veves A, Mooney DJ. Advanced bandages for diabetic wound healing. Sci Transl Med. 2021;13(585):eabe4839. doi: 10.1126/scitranslmed.abe4839. [DOI] [PubMed] [Google Scholar]
- 2.Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019;21(1):18–24. doi: 10.1038/s41556-018-0237-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Willenborg S, Eming SA. Cellular networks in wound healing. Science. 2018;362(6417):891–892. doi: 10.1126/science.aav5542. [DOI] [PubMed] [Google Scholar]
- 4.Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–383. doi: 10.1038/s41580-020-0230-3. [DOI] [PubMed] [Google Scholar]
- 5.Mittler R, Zandalinas SI, Fichman Y, et al. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol. 2022;23(10):663–679. doi: 10.1038/s41580-022-00499-2. [DOI] [PubMed] [Google Scholar]
- 6.Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–361. doi: 10.1038/nri3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Franchina DG, Dostert C, Brenner D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 2018;39(6):489–502. doi: 10.1016/j.it.2018.01.005. [DOI] [PubMed] [Google Scholar]
- 8.Chai Q, Yu S, Zhong Y, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science. 2022;378(6616):eabq0132. doi: 10.1126/science.abq0132. [DOI] [PubMed] [Google Scholar]
- 9.Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. doi: 10.1038/nrmicro2070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310–4329. doi: 10.7150/thno.71086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. doi: 10.1038/s41392-021-00507-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Hussain Z, Thu HE, Rawas-Qalaji M, et al. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol. 2022;68:103092. doi: 10.1016/j.jddst.2022.103092. [DOI] [Google Scholar]
- 13.Niu Y, Li Q, Ding Y, et al. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev. 2019;146:190–208. doi: 10.1016/j.addr.2018.06.002. [DOI] [PubMed] [Google Scholar]
- 14.Ma X, Hao J, Wu J, et al. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv Mater. 2022;34(15):e2106723. doi: 10.1002/adma.202106723. [DOI] [PubMed] [Google Scholar]
- 15.Xu N, Yuan Y, Ding L, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma, 2022, 10: tkac019[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/35910193/. DOI: 10.1093/burnst/tkac019.
- 16.Shi R, Li H, Jin X, et al. Promoting re-epithelialization in an oxidative diabetic wound microenvironment using self-assembly of a ROS-responsive polymer and P311 peptide micelles. Acta Biomater. 2022;152:425–439. doi: 10.1016/j.actbio.2022.09.017. [DOI] [PubMed] [Google Scholar]
- 17.Huang R, Hu J, Qian W, et al. Recent advances in nanotherapeutics for the treatment of burn wounds[J/OL]. Burns Trauma, 2021, 9: tkab026[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/34778468/. DOI: 10.1093/burnst/tkab026.
- 18.吴 近芳, 洪 旭东, 金 剑, et al. 季铵化壳聚糖-重组组织因子途径抑制物复合物对大鼠碾压撕脱皮瓣的影响. 中华烧伤杂志. 2021;37(12):1158–1165. doi: 10.3760/cma.j.cn501120-20200914-00409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Yan R, Liu X, Xiong J, et al. pH-responsive hyperbranched polypeptides based on Schiff bases as drug carriers for reducing toxicity of chemotherapy. RSC Adv. 2020;10(23):13889–13899. doi: 10.1039/d0ra01241f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96. doi: 10.1111/iwj.12557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Las Heras K, Igartua M, Santos-Vizcaino E, et al. Chronic wounds: current status, available strategies and emerging therapeutic solutions. J Control Release. 2020;328:532–550. doi: 10.1016/j.jconrel.2020.09.039. [DOI] [PubMed] [Google Scholar]
- 22.Veith AP, Henderson K, Spencer A, et al. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2019;146:97–125. doi: 10.1016/j.addr.2018.09.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.张 清荣, 杨 晓, 李 正, et al. 活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响. 中华烧伤杂志. 2021;37(11):1024–1035. doi: 10.3760/cma.j.cn501120-20210831-00299. [DOI] [Google Scholar]
- 24.Yao Y, Zhang H, Wang Z, et al. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J Mater Chem B. 2019;7(33):5019–5037. doi: 10.1039/c9tb00847k. [DOI] [PubMed] [Google Scholar]
- 25.Xie W, Hu W, Huang Z, et al. Betulinic acid accelerates diabetic wound healing by modulating hyperglycemia-induced oxidative stress, inflammation and glucose intolerance[J/OL]. Burns Trauma, 2022, 10: tkac007[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/35415192/. DOI: 10.1093/burnst/tkac007.
- 26.Shen M, Li H, Yao S, et al. Shear stress and ROS-responsive biomimetic micelles for atherosclerosis via ROS consumption. Mater Sci Eng C Mater Biol Appl. 2021;126:112164. doi: 10.1016/j.msec.2021.112164. [DOI] [PubMed] [Google Scholar]
- 27.Li L, Wang Y, Guo R, et al. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J Control Release. 2020;317:259–272. doi: 10.1016/j.jconrel.2019.11.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Zhao Z, Han Z, Naveena K, et al. ROS-responsive nanoparticle as a berberine carrier for OHC-targeted therapy of noise-induced hearing loss. ACS Appl Mater Interfaces. 2021;13(6):7102–7114. doi: 10.1021/acsami.0c21151. [DOI] [PubMed] [Google Scholar]
- 29.Shi CX, Wang Y, Chen Q, et al. Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 pathways. Front Cell Infect Microbiol. 2020;10:196. doi: 10.3389/fcimb.2020.00196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Moulin E, Nyrkova IA, Giuseppone N, et al. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function. Soft Matter. 2020;16(12):2971–2993. doi: 10.1039/c9sm02480h. [DOI] [PubMed] [Google Scholar]
- 31.Chen YQ, Cao J, Zhu HY, et al. Synthesis and evaluation of methionine and folate co-decorated chitosan self-assembly polymeric micelles as a potential hydrophobic drug-delivery system. Chin Sci Bull. 2013;58:2379–2386. doi: 10.1007/s11434-013-5733-2. [DOI] [Google Scholar]
- 32.Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and mucosal inflammation. Annu Rev Pathol. 2016;11:77–100. doi: 10.1146/annurev-pathol-012615-044231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Pashenkov MV, Balyasova LS, Dagil YA, et al. The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor. J Immunol. 2017;198(4):1638–1648. doi: 10.4049/jimmunol.1600467. [DOI] [PubMed] [Google Scholar]
- 34.Schäffler H, Geiss D, Gittel N, et al. Mutations in the NOD2 gene are associated with a specific phenotype and lower anti-tumor necrosis factor trough levels in Crohn's disease. J Dig Dis. 2018;19(11):678–684. doi: 10.1111/1751-2980.12677. [DOI] [PubMed] [Google Scholar]
- 35.Di Carlo S, Häcker G, Gentle IE. GM-CSF suppresses antioxidant signaling and drives IL-1β secretion through NRF2 downregulation. EMBO Rep. 2022;23(8):e54226. doi: 10.15252/embr.202154226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Abdul-Sater AA, Saïd-Sadier N, Padilla EV, et al. Chlamydial infection of monocytes stimulates IL-1β secretion through activation of the NLRP3 inflammasome. Microbes Infect. 2010;12(8/9):652–661. doi: 10.1016/j.micinf.2010.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]


