Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 May 15;196(2):433–442. doi: 10.1042/bj1960433

MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase.

P N Lowe, R B Beechey
PMCID: PMC1163014  PMID: 6459083

Abstract

1. Preincubation of the ox heart chloroform-released mitochondrial ATPase with MgATP results in a time-dependent inhibition of ATPase activity. No re-activation occurs when MgATP remains in the preincubation medium. The enzyme activity returns when all the MgATP in the preincubation system has been hydrolysed. 2. The mechanism of the MgATP-induced inhibition was examined. Inhibition occurs on incubation with MgATP or other hydrolysable nucleotides. Incubation with MgADP or Pi does not cause any inhibition. Neither freshly bound adenine nucleotide nor Pi is associated with inhibited enzyme. The rate of MgATP-induced inhibition correlates with the rate of ATP hydrolysis in the preincubation medium. Changing the rate of ATP hydrolysis at a fixed concentration of ATP also changes the rate of MgATP-induced inhibition by the same proportion. The inhibition is thus related to the ATP-hydrolysis process itself. 3. We propose that intermediate enzyme species of the ATP-hydrolytic sequence can undergo a conformational change to form inhibited species. The kinetics of the inhibition suggest that a substrate-activation step is involved in ATP hydrolysis and MgATP-induced inhibition. 4. The effects of the nature of the preincubation medium on the process of MgATP-induced inhibition and its reversal were examined.

Full text

PDF
433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimenko V. K., Minkov I. B., Bakeeva L. E., Vinogradov A. D. Vydelenie i svoistva rastvorimoi ATFazy mitokhondrii serdtsa byka. Biokhimiia. 1972 Mar-Apr;37(2):348–359. [PubMed] [Google Scholar]
  2. Chernyak V. Y., Kozhanova Z. E., Chernyak B. V., Kozlov I. A. Investigation of soluble mitochondrial ATPase by the reacting enzyme sedimentation method. Eur J Biochem. 1979 Aug 1;98(2):585–589. doi: 10.1111/j.1432-1033.1979.tb13220.x. [DOI] [PubMed] [Google Scholar]
  3. Gomez-Fernandez J. C., Harris D. A. A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. Biochem J. 1978 Dec 15;176(3):967–975. doi: 10.1042/bj1760967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hammes G. G., Hilborn D. A. Steady state kinetics of soluble and membrane-bound mitochondrial ATPase. Biochim Biophys Acta. 1971 Jun 1;233(3):580–590. doi: 10.1016/0005-2736(71)90156-8. [DOI] [PubMed] [Google Scholar]
  5. Harris D. A., Gomez-Fernandez J. C., Klungsøyr L., Radda G. K. Specificity of nucleotide binding and coupled reactions utilising the mitochondrial ATPase. Biochim Biophys Acta. 1978 Dec 7;504(3):364–383. doi: 10.1016/0005-2728(78)90060-9. [DOI] [PubMed] [Google Scholar]
  6. Leimgruber R. M., Senior A. E. Removal of "tightly bound" nucleotides from soluble mitochondrial adenosine triphosphatase (F1). J Biol Chem. 1976 Nov 25;251(22):7103–7109. [PubMed] [Google Scholar]
  7. Lowe P. N., Baum H., Beechey R. B. Properties of chloroform-released ox heart mitochondrial adenosine triphosphatase; comparison with F1-adenosine triphosphatase and factor A [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):1127–1129. doi: 10.1042/bst0071127. [DOI] [PubMed] [Google Scholar]
  8. Lowe P. N., Beechey R. B. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles. Biochem J. 1981 May 15;196(2):443–449. doi: 10.1042/bj1960443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lowe P. N., Linnett P. E., Baum H., Beechey R. B. MgATP-induced inhibition of the enzymic activity of chloroform-released ox-heart mitochondrial ATPase. Biochem Biophys Res Commun. 1979 Nov 28;91(2):599–605. doi: 10.1016/0006-291x(79)91564-x. [DOI] [PubMed] [Google Scholar]
  10. Minkov I. B., Fitin A. F., Vasilyeva E. A., Vinogradov A. D. Mg2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1300–1306. doi: 10.1016/0006-291x(79)92150-8. [DOI] [PubMed] [Google Scholar]
  11. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  12. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  13. Segel L. D., Chung A., Mason D. T., Amsterdam E. A. Cardiac glycogen in long-evans rats: diurnal pattern and response to exercise. Am J Physiol. 1975 Aug;229(2):398–401. doi: 10.1152/ajplegacy.1975.229.2.398. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES