Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 May 15;196(2):443–449. doi: 10.1042/bj1960443

MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles.

P N Lowe, R B Beechey
PMCID: PMC1163015  PMID: 6459084

Abstract

1. The ATP-hydrolytic activity of ox heart submitochondrial particles can be increased from 2-3 mumol/min per mg of protein to 10-12 mumol/min per mg of protein by incubation in media containing 50 mM-Na2B4O7. This process appears to be due to the partial release of inhibitor protein from the particles. 2. The ATPase activity of submitochondrial particles can be inhibited by incubation with the substrate, MgATP. This inhibition is not due to the accumulation of the hydrolysis products, MgADP and Pi, but could involve the process of ATP hydrolysis. 3. The mechanism of MgATP-induced inhibition of ATPase activity is proposed to involve a conformational change in one of the intermediate enzyme species of the ATP-hydrolytic sequence. 4. MgATP inhibits the ATPase activity of control submitochondrial particles at a higher rate and to a greater extent than it does that of inhibitor-protein-depleted submitochondrial particles, suggesting that the conformational change involves the endogenous inhibitor protein.

Full text

PDF
443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asami K., Juniti K., Ernster L. Possible regulatory function of a mitochondrial ATPase inhibitor in respiratory chain-linked energy transfer. Biochim Biophys Acta. 1970;205(2):307–311. doi: 10.1016/0005-2728(70)90261-6. [DOI] [PubMed] [Google Scholar]
  2. Bruni A., Bigon E. Diphosphatidylglycerol-induced changes in the organization of mitochondrial ATPase. Biochim Biophys Acta. 1974 Sep 20;357(3):333–343. doi: 10.1016/0005-2728(74)90023-1. [DOI] [PubMed] [Google Scholar]
  3. Bruni A., Frigeri L., Bigon E. Cold lability of membrane-bound F1-ATPase. Biochim Biophys Acta. 1977 Nov 17;462(2):323–332. doi: 10.1016/0005-2728(77)90131-1. [DOI] [PubMed] [Google Scholar]
  4. Bruni A., Pitotti A., Palatini P., Dabbeni-Sala F., Bigon E. F1-ATPase from different submitochondrial particles. Biochim Biophys Acta. 1979 Mar 15;545(3):404–414. doi: 10.1016/0005-2728(79)90149-x. [DOI] [PubMed] [Google Scholar]
  5. Chernyak V. Y., Kozhanova Z. E., Chernyak B. V., Kozlov I. A. Investigation of soluble mitochondrial ATPase by the reacting enzyme sedimentation method. Eur J Biochem. 1979 Aug 1;98(2):585–589. doi: 10.1111/j.1432-1033.1979.tb13220.x. [DOI] [PubMed] [Google Scholar]
  6. Dabbeni-Sala F., Furland R., Pitotti A., Bruni A. The activation of mitochondrial particulate ATPase by liposomes of diacylphospholipids. Biochim Biophys Acta. 1974 Apr 23;347(1):77–86. doi: 10.1016/0005-2728(74)90201-1. [DOI] [PubMed] [Google Scholar]
  7. Ferguson S. J., Harris D. A., Radda G. K. The adenosine triphosphatase-inhibitor content of bovine heart submitochondrial particles. Influence of the inhibitor on adenosine triphosphate-dependent reactions. Biochem J. 1977 Feb 15;162(2):351–357. doi: 10.1042/bj1620351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson S. J., Lloyd W. J., Radda G. K. A method for determining the adenosine triphosphatase content of energy-transducing membranes. reaction of 4-chloro-7-nitrobenzofurazan with the adenosine triphosphatase of bovine heart submitochondrial particles. Biochem J. 1976 Nov;159(2):347–353. doi: 10.1042/bj1590347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gomez-Fernandez J. C., Harris D. A. A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. Biochem J. 1978 Dec 15;176(3):967–975. doi: 10.1042/bj1760967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horstman L. L., Racker E. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J Biol Chem. 1970 Mar 25;245(6):1336–1344. [PubMed] [Google Scholar]
  11. Kurup C. K., Sanadi D. R. Effect of preincubation with ATP on ATP-dependent reactions in sub-mitochondrial particles. FEBS Lett. 1976 Dec 15;72(1):131–135. doi: 10.1016/0014-5793(76)80828-9. [DOI] [PubMed] [Google Scholar]
  12. Linnett P. E., Mitchell A. D., Osselton M. D., Mulheirn L. J., Beechey R. B. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase. Biochem J. 1978 Mar 15;170(3):503–510. doi: 10.1042/bj1700503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lowe P. N., Baum H., Beechey R. B. Properties of chloroform-released ox heart mitochondrial adenosine triphosphatase; comparison with F1-adenosine triphosphatase and factor A [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):1127–1129. doi: 10.1042/bst0071127. [DOI] [PubMed] [Google Scholar]
  14. Lowe P. N., Beechey R. B. MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase. Biochem J. 1981 May 15;196(2):433–442. doi: 10.1042/bj1960433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lowe P. N., Linnett P. E., Baum H., Beechey R. B. MgATP-induced inhibition of the enzymic activity of chloroform-released ox-heart mitochondrial ATPase. Biochem Biophys Res Commun. 1979 Nov 28;91(2):599–605. doi: 10.1016/0006-291x(79)91564-x. [DOI] [PubMed] [Google Scholar]
  16. PULLMAN M. E., MONROY G. C. A NATURALLY OCCURRING INHIBITOR OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3762–3769. [PubMed] [Google Scholar]
  17. Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]
  18. Satre M., de Jerphanion M. B., Huet J., Vignais P. V. ATPase inhibitor from yeast mitochondria. Purification and properties. Biochim Biophys Acta. 1975 May 15;387(2):241–255. doi: 10.1016/0005-2728(75)90107-3. [DOI] [PubMed] [Google Scholar]
  19. Warshaw J. B., Lam K. W., Nagy B., Sanadi D. R. Studies on oxidative phosphorylation. XV. Latent adenosine 5'-triphosphatase activity of factor A. Arch Biochem Biophys. 1968 Feb;123(2):385–396. doi: 10.1016/0003-9861(68)90149-5. [DOI] [PubMed] [Google Scholar]
  20. van de Stadt R. J., de Boer B. L., van Dam K. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor. Biochim Biophys Acta. 1973 Feb 22;292(2):338–349. doi: 10.1016/0005-2728(73)90040-6. [DOI] [PubMed] [Google Scholar]
  21. van de Stadt R. J., van Dam K. The equilibrium between the mitochondrial ATPase (F1) and its natural inhibitor in submitochondrial particles. Biochim Biophys Acta. 1974 May 22;347(2):240–252. doi: 10.1016/0005-2728(74)90048-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES