Abstract
目的
探讨具有不同拓扑结构的三维生物打印支架介导的免疫反应对小鼠毛囊周期的影响。
方法
该研究为实验研究。将海藻酸钠-明胶复合水凝胶用三维生物打印机打印成3种支架,并按照支架的3种拓扑结构(打印时打印喷头的旋转角度分别为45°、60°、90°),分别命名为T45支架、T60支架、T90支架,肉眼观察3种支架交联后的形态。取9只8周龄雌性C57BL/6J小鼠,按随机数字表法分为T45组、T60组、T90组,每组3只,分别于背部皮下埋植T45、T60、T90支架。于植入后7 d,观察小鼠背部脱毛区毛发生长情况,行苏木精-伊红染色观测支架周围的纤维囊厚度,行免疫荧光染色检测支架周围组织中CD68、骨形态发生蛋白2(BMP-2)、肿瘤坏死因子(TNF)蛋白的表达水平。以上实验样本数均为3。
结果
3种支架交联后均拓扑结构明显,保真度高。植入后7 d,T45组、T90组小鼠背部脱毛区毛发均生长明显;T60组小鼠支架植入区毛发生长缓慢,与未植入区差别明显。植入后7 d,与T90组[(18±4)μm]相比,T45组、T60组小鼠支架周围的纤维囊厚度[(39±4)、(55±8)μm]均明显增加(P < 0.05);与T45组相比,T60组小鼠支架周围的纤维囊厚度明显增加(P < 0.05)。植入后7 d,T60组小鼠支架周围组织中CD68蛋白的表达水平明显高于T45组和T90组(P值均 < 0.05);T60组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T45组、T90组(P值均 < 0.05),T45组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T90组(P < 0.05);T60组小鼠支架周围组织中TNF蛋白的表达水平明显低于T45组和T90组(P值均 < 0.05)。
结论
具有不同拓扑结构的三维生物打印支架植入小鼠体内后会介导不同程度的免疫反应。适度的免疫反应可促进小鼠脱毛区毛发生长,过强的免疫反应抑制毛囊进入生长期。
Keywords: 组织工程, 打印,三维, 免疫, 组织支架, 毛囊, 拓扑
Abstract
Objective
To explore the effects of the immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice.
Methods
The study was an experimental research. The alginate-gelatin composite hydrogels were printed into scaffolds using a three-dimensional bioprinter and named T45 scaffolds, T60 scaffolds, and T90 scaffolds according to the 3 topological structures of the scaffolds (the rotation angles of the printhead during printing were 45°, 60°, and 90°, respectively), and the morphology of the three scaffolds was observed after cross-linking by naked eyes. Nine 8-week-old female C57BL/6J mice were divided into T45 group, T60 group, and T90 group, according to the random number table, with three mice in each group, and the T45, T60, and T90 scaffolds were subcutaneously implanted on the back of mice, respectively. On post implantation day (PID) 7, the hair growth in the dorsal depilated area of mice was observed, the thickness of the fiber capsule around the scaffolds was observed by hematoxylin-eosin staining, and the expression levels of CD68, bone morphogenetic protein-2 (BMP-2), and tumor necrosis factor (TNF) protein in the tissue surrounding the scaffolds were observed by immunofluorescence staining. The samples of the above experiments were all 3.
Results
The topological structures of the three scaffolds were all clear with high fidelity after cross-linking. On PID 7, the hair growth was obvious in the dorsal depilated area of mice in T45 group and T90 group, while hair growth was slow in the scaffold implantation area of mice in T60 group, which was significantly different from that of the unimplanted area. On PID 7, compared with (18±4) μm in T90 group, the thickness of both the fiber capsule around the scaffolds ((39±4) and (55±8) μm) of mice in T45 group and T60 group was significantly increased (P < 0.05); the thickness of the fiber capsule around the scaffolds of mice in T60 group was also significantly increased compared with that in T45 group (P < 0.05). On PID 7, the expression level of CD68 protein in the tissue surrounding the scaffolds of mice in T60 group was significantly higher than the levels in T45 group and T90 group (with bothP values < 0.05). The expression level of BMP-2 protein in the tissue surrounding the scaffolds of mice in T60 group was significantly higher than the levels in T45 group and T90 group (with both P values < 0.05), and the expression level of BMP-2 protein in the tissue surrounding the scaffolds of mice in T45 group was significantly higher than that in T90 group (P < 0.05). The expression level of TNF protein in the tissue surrounding the scaffolds of mice in T60 group was significantly lower than the levels in T45 group and T90 group (with bothP values < 0.05).
Conclusions
Three-dimensional bioprinted scaffolds with different topological structures mediate different degrees of immune responses after being implanted in mice. A moderate immune response promotes hair growth in depilated area of mice, while an excessive immune response results inhibits the hair follicle entering into the anagen phase.
Keywords: Tissue engineering; Printing, three-dimensional; Immunity; Tissue scaffolds; Hair follicle; Topology
近年来,组织工程技术快速发展,为损伤后组织修复与再生提供了有效方案[1-3]。由生物材料制备而成的支架在组织工程中占据重要地位[4]。当支架植入体内后,宿主免疫系统启动,免疫反应被激活[2]。适度的免疫反应不仅可以动员干/祖细胞分化,促进ECM沉积,还可以刺激生长因子分泌和新血管生成[5-6]。但某些植入物会诱导机体产生过度免疫反应,形成纤维包囊,导致植入失败[7-8]。因此,适度的免疫反应有利于组织工程产品的成功植入和促进组织再生。
三维生物打印技术是目前最前沿的组织工程技术,其可以在空间上集成多个生物、物理和化学因素,从而调控细胞行为,并确保打印出的支架具有高结构完整性和保真度[9-11]。拓扑结构是三维生物打印支架的重要物理因素,指支架的宏观空间几何结构。有研究表明,三维生物打印支架的拓扑结构会影响细胞的增殖、迁移和分化,还会影响巨噬细胞极化[12-14]。然而将具有不同拓扑结构的三维生物打印支架植入体内后是否会引起宿主不同的免疫反应进而影响组织再生,尚未见报道。
海藻酸钠-明胶复合水凝胶是最常见的挤出式三维生物打印墨水,具有良好的可打印性和生物相容性[15-16]。本课题组前期对三维生物打印海藻酸钠-明胶复合水凝胶支架调控细胞功能和促进组织再生的作用进行了深入探究[17],在此基础上,本研究探讨其拓扑结构介导的免疫反应对宿主的影响。首先,本研究团队制备具有不同拓扑结构的三维生物打印支架,其次构建了小鼠背部皮下埋植模型[18],最后通过对植入部位进行病理学观测,初步探讨了具有不同拓扑结构的支架引发的免疫反应及免疫反应对支架周围毛囊周期的影响,拟为三维生物打印支架促进组织再生及临床转化提供新策略。
1. 材料与方法
本实验研究经解放军总医院伦理委员会审批通过,批号:SCXK(BJ)2017-0019,遵循国家和解放军总医院有关实验动物管理和使用的相关规定。
1.1. 动物及主要试剂与仪器来源
9只健康无特殊病原体级8周龄体重15~20 g雌性C57BL/6J小鼠购自北京华阜康生物科技股份有限公司,许可证号:SCXK(京)2019-0008。海藻酸钠和明胶购自美国Sigma公司。氯化钙购自天津市福晨化学试剂厂。兔抗小鼠骨形态发生蛋白2(bone morphogenetic protein-2,BMP-2)单克隆抗体、兔抗小鼠CD68单克隆抗体、兔抗小鼠TNF单克隆抗体购自美国Abcam公司。4′,6-二脒基-2-苯基吲哚购自美国Southernbiotech公司。Alexa Fluor 488标记的山羊抗兔IgG抗体购自美国Protein Tech公司。Regenovo型三维生物打印机购自杭州捷诺飞生物科技股份有限公司。BX43型光学显微镜购自日本Olympus公司。TCS SP8型激光扫描共聚焦显微镜购自德国Leica公司。
1.2. 三维生物打印支架的制备
1.2.1. 海藻酸钠-明胶复合水凝胶的制备
在室温下称取0.1 g海藻酸钠和0.3 g明胶,混合均匀后加入到10 mL PBS中,得到混悬液。将装有混悬液的离心管置于70 ℃水浴锅中直到海藻酸钠和明胶充分溶解,制得含终质量浓度0.01 g/mL海藻酸钠和0.03 g/mL明胶的海藻酸钠-明胶复合水凝胶。采用巴氏消毒法将水凝胶消毒后置于4 ℃冰箱保存[19]。
1.2.2. 具有不同拓扑结构三维生物打印支架的制备
将冷藏保存的水凝胶在37 ℃水浴锅中融化后,取5 mL置于无菌打印注射器中。将含水凝胶的无菌打印注射器置于4 ℃冰箱,冷凝20 min后安装到温度为10 ℃的三维生物打印机打印臂上,将打印臂喷头温度也调至10 ℃,平台温度调至4 ℃,挤出压强设为0.1 MPa,挤出速度设为10 mm/s。打印喷嘴直径为340 μm。将打印参数设置如下:长、宽均为1.5 cm,高为0.32 cm,采用线性填充,填充间距为3 mm,旋转次数为2次,分别将打印喷头的旋转角度设为45°或90°,每种支架打印3块。将旋转角度分别为45°、90°的支架按照打印后的拓扑结构命名为T45支架、T90支架。再次将打印参数设置为边长1.39 cm,高0.32 cm,采用连续线填充中的正三角形填充,填充间距3 mm,填充份数4份,打印喷头的旋转角度为60°,打印3块,将该种支架命名为T60支架。打印完成后将3种支架各取3块分别用适量的25 g/L氯化钙溶液交联10 min后,完全去除氯化钙溶液,并用PBS润洗2次。肉眼观察3种支架的形态。
1.3. 具有不同拓扑结构三维生物打印支架皮下埋植动物实验
1.3.1. 模型制备及分组处理
将9只小鼠按随机数字表法分为T45组、T60组、T90组,每组3只。将每只小鼠按50 mg/kg腹腔注射20 g/L戊巴比妥钠麻醉后,采用剃毛法和脱毛膏对背部进行脱毛。常规消毒后在小鼠背部做一长约1.5 cm的皮肤切口,钝性分离皮下组织形成皮下腔,植入1块相应的支架,用皮钉固定皮肤切口。
1.3.2. 背部脱毛区毛发生长情况观察
于植入后7 d,肉眼观察每组3只小鼠背部脱毛区毛发生长情况。
1.3.3. 支架周围的纤维囊厚度观测
于植入后7 d,收集各组小鼠植入的支架及支架上方的全层皮肤组织,常规制作石蜡切片(厚6 μm)。每组各取3张切片,行HE染色,于100倍光学显微镜下观察支架降解程度,采用ImageJ软件(美国国立卫生研究院)测量支架周围的纤维囊厚度。
1.3.4. 支架周围组织中CD68、BMP-2、TNF蛋白的表达水平检测
每组各取3张切片,行免疫荧光染色。一抗为兔抗小鼠CD68单克隆抗体(稀释比为1∶100)、兔抗小鼠BMP-2单克隆抗体(稀释比为1∶500)、兔抗小鼠TNF单克隆抗体(稀释比为1∶100),二抗为Alexa Fluor 488标记的山羊抗兔IgG抗体(稀释比为1∶200),细胞核染色试剂为4′,6-二脒基-2-苯基吲哚。于200倍激光扫描共聚焦显微镜下拍摄荧光图像,采用ImageJ软件测量纤维囊周围CD68蛋白(巨噬细胞标志物,阳性染色为绿色)、毛囊周围BMP-2蛋白(小鼠毛囊静止期标志物[20],阳性染色为绿色)和TNF蛋白(小鼠毛囊生长期标志物[21],阳性染色为绿色)的平均荧光强度,用平均荧光强度代表各蛋白的表达水平。
1.4. 统计学处理
使用SPSS 24.0统计软件进行数据分析。计量资料数据均符合正态分布,以x±s表示,组间总体比较行单因素方差分析,组间两两比较行Bonferroni检验。P < 0.05为差异有统计学意义。
2. 结果
2.1. 具有不同拓扑结构三维生物打印支架的形态
T45支架孔隙为平行四边形,T60支架孔隙为三角形,T90支架孔隙为正方形。交联后各支架均保真度高,内外部拓扑结构明显,与模型形态保持一致。见图 1。
图 1.
3种拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架形态。1A、1B、1C.分别为交联后的T45、T60、T90支架,形态均与模型一致
The morphology of three-dimensional bioprinted scaffolds of alginate-gelation composite hydrogels with different topological structures
注:T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度,各图中右上角为模型图像
2.2. 小鼠背部脱毛区毛发生长情况
植入后7 d,T45组、T90组小鼠背部脱毛区毛发均生长明显,支架植入区与未植入区的毛发生长情况相似;T60组小鼠支架植入区毛发则生长缓慢,与未植入区有明显差别,皮肤呈粉红色。见图 2。
图 2.
3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后的大体形态。2A、2B、2C.分别为T45组、T60组、T90组支架植入后的大体形态,图 2A、2C中支架植入区与未植入区的毛发生长情况相似,图 2B中支架植入区毛发生长缓慢、皮肤呈粉红色
The gross morphology of subcutaneously implanted three-dimensional bioprinted scaffolds of alginate-gelation composite hydrogels with different topological structures in 3 groups of mice after 7 days
注:T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度;黄色虚线内区域为支架植入区
2.3. 支架周围的纤维囊厚度
植入后7 d,3组小鼠支架周围浸润炎症细胞均通过了皮下肌层,侵入真皮层,到达毛囊周围;支架均未完全降解,且支架周围均形成纤维囊,支架孔隙内部有纤维囊长入。见图 3。T45组、T60组、T90组小鼠支架周围的纤维囊厚度分别为(39±4)、(55±8)、(18±4)μm,组间总体比较,差异有统计学意义(F=37.33,P < 0.001)。与T90组相比,T45组、T60组小鼠支架周围的纤维囊厚度均明显增加(P值分别为0.008、0.001);与T45组相比,T60组小鼠支架周围的纤维囊厚度明显增加(P=0.030)。
图 3.
3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后支架周围组织病理变化苏木精-伊红×100。3A、3B、3C.分别为T45组、T60组、T90组支架未降解部分及其周围的皮肤组织,各组支架周围均形成纤维囊,相对于图 3A、3C,图 3B中支架周围的纤维囊较厚
The pathologic changes in the tissue surrounding the scaffolds of subcutaneously implanted three-dimensional bioprinted scaffolds of alginate-gelation composite hydrogels with different topological structures in 3 groups of mice after 7 days
注:T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度;红色箭头指示纤维囊,蓝色箭头指示未降解的支架
2.4. 支架周围组织中CD68、BMP-2、TNF蛋白的表达水平
植入后7 d,T60组小鼠支架周围组织中CD68蛋白的表达水平明显高于T45组和T90组(P值均 < 0.05);T45组和T90组小鼠支架周围组织中CD68蛋白的表达水平比较,差异无统计学意义(P > 0.05)。T60组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T45组、T90组(P值均 < 0.05),T45组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T90组(P < 0.05)。T60组小鼠支架周围组织中TNF蛋白的表达水平明显低于T45组和T90组(P值均 < 0.05),T45组和T90组小鼠支架周围组织中TNF蛋白的表达水平比较,差异无统计学意义(P > 0.05)。见图 4、表 1。
图 4.
3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后支架周围组织中CD68、BMP-2、TNF蛋白的表达水平Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚×200。4A、4B、4C.分别为T45组、T60组、T90组支架周围组织中CD68蛋白的表达水平,图 4B中CD68蛋白的表达水平高于图 4A、4C;4D、4E、4F.分别为T45组、T60组、T90组支架周围组织中BMP-2蛋白的表达水平,图 4E中BMP-2蛋白的表达水平高于图 4D、4F;4G、4H、4I.分别为T45组、T60组、T90组支架周围组织中TNF蛋白的表达水平,图 4H中TNF蛋白的表达水平低于图 4G、4I
The expression levels of CD68, BMP-2, and TNF protein in the tissue surrounding the scaffolds of subcutaneously implanted three-dimensional bioprinted scaffolds of alginate-gelation composite hydrogels with different topological structures in 3 groups of mice after 7 days
注:BMP-2为骨形态发生蛋白2、TNF为肿瘤坏死因子;CD68、BMP-2、TNF蛋白阳性表达均为绿色;T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度
表 1.
3组小鼠皮下埋植具有不同拓扑结构的三维生物打印海藻酸钠-明胶复合水凝胶支架7 d后支架周围组织中3种蛋白的表达比较(x±s)
Comparison of the expressions of 3 proteins in the tissue surrounding the scaffolds of subcutaneously implanted three-dimensional bioprinted scaffolds of alginate-gelation composite hydrogels with different topological structures in 3 groups of mice after 7 days
组别 | 样本数 | CD68 | BMP-2 | TNF |
注:BMP-2为骨形态发生蛋白2,TNF为肿瘤坏死因子;T45、T60、T90中T指拓扑结构,45、60、90指三维生物打印支架时打印喷头的旋转角度;F值、P值为3组间各指标总体比较所得;P1值、P2值分别为T45组与T60组、T90组比较所得,P3值为T60组与T90组比较所得 | ||||
T45组 | 3 | 23.9±2.0 | 6.1±0.5 | 15.4±3.5 |
T60组 | 3 | 63.8±12.5 | 17.5±0.8 | 8.0±0.9 |
T90组 | 3 | 25.4±2.2 | 2.4±0.9 | 15.4±2.3 |
F值 | 27.58 | 177.60 | 8.95 | |
P值 | 0.001 | < 0.001 | 0.016 | |
P1值 | 0.002 | < 0.001 | 0.032 | |
P2值 | > 0.999 | 0.003 | > 0.999 | |
P3值 | 0.002 | < 0.001 | 0.031 |
3. 讨论
三维生物打印组织植入体内后,由于其中支架材料均为异体组织,因此会引起不同程度的免疫反应[22]。本文将具有不同拓扑结构的三维生物打印支架植入体内,探究其对宿主免疫反应和周围组织的调控作用。
本研究选择了可打印性良好的海藻酸钠-明胶复合水凝胶作为三维生物打印的支架材料,并设计了3种具有不同拓扑结构的支架,根据其打印时的旋转角度将其分别命名为T45支架、T60支架、T90支架。三维生物打印后可以看到3种支架均具有较好的保真度,拓扑结构与模型一致。同时,本研究没有选择打印边框,保证了支架内外部的拓扑结构按照预想的方式被打印,避免边框造成支架(尤其是T45支架、T90支架)外部形状相似影响后续结果。然后将三维生物打印支架植入小鼠背部皮下7 d后,对其引起的免疫反应进行了观测。T60组小鼠支架周围形成的纤维囊要明显厚于T45组、T90组,同时CD68蛋白的表达水平也明显高于T45组、T90组。这表明与T45组、T90组相比,T60组支架在植入体内7 d后引起的免疫反应更强。此外,本研究中选用8周龄的小鼠,该年龄段的小鼠毛囊处于静止期。在皮下埋植支架前,采用剃毛法和脱毛膏完全去除小鼠背部毛发,刺激其背部毛囊进入生长期。在植入支架后7 d后,T45组、T90组小鼠背部脱毛区(包括支架植入区与未植入区)皮肤全部变黑,毛发已开始生长[23];而T60组小鼠支架植入区出现了毛发缺损区域,恰巧处于支架植入的位置且形状与支架形状完全吻合。因此,推测T60组支架的拓扑结构影响了支架植入区毛囊从静止期向生长期转变。
为了明确现象,本研究团队对植入支架后7 d后的植入区全层皮肤进行了组织病理学观测。HE染色结果表明,支架周围浸润的免疫细胞突破皮下肌层,进入了真皮层,分布在毛囊周围。免疫荧光染色结果显示,T60组小鼠支架周围组织中TNF蛋白的表达水平明显低于T45组、T90组,相反地T60组小鼠支架周围组织中BMP-2蛋白的表达水平明显高于T45组、T90组,说明T60组毛囊周围的大量炎症细胞并没有分泌大量TNF蛋白促进毛发生长,可能与T60支架拓扑结构对炎症细胞分泌行为的调控有关,但其机制仍需进一步探索。
综上所述,具有不同拓扑结构的三维生物打印支架会引发不同程度的免疫反应,其中,过强的免疫反应会抑制支架植入区毛发生长,这为利用三维生物打印支架的拓扑结构来调控宿主免疫反应和周围毛囊生长周期提供了新思路。但免疫反应调控毛囊周期的机制并不清楚,有待进一步研究。
Funding Statement
国家重点研发计划项目(2022YFA1104600、2022YFA1104604、2017YFC1103303);国防科技卓越青年科学基金项目(2022-JCJQ-ZQ-016);国防科技基础加强计划项目(2022-JCJQ-ZD-096-00、2023-JCJQ-ZD-117-12);国家自然科学基金面上项目(82274362);国家自然科学基金青年科学基金项目(32000969);军事科研重点实验室自主科研项目(2023-JSKY-SSQG-008);内蒙古自治区自然科学基金项目(2021LHMS08050);内蒙古自治区高等学校创新团队发展计划(NMGIRT2227);内蒙古医科大学重点项目(YKD2021ZD001)
National Key Research and Development Program of China (2022YFA1104600, 2022YFA1104604, 2017YFC1103303); Science Fund for National Defense Distinguished Young Scholars (2022-JCJQ-ZQ-016); National Defense Science and Technology Basic Enhancement Program (2022-JCJQ-ZD-096-00, 2023-JCJQ-ZD-117-12); General Program of National Natural Science Foundation of China (82274362); Youth Science Foundation Project of National Natural Science Foundation of China (32000969); Scientific Research Project of the Key Laboratory for Military Research (2023-JSKY-SSQG-008); Natural Science Foundation of Inner Mongolia Autonomous Region of China (2021LHMS08050); Inner Mongolia Autonomous Region Higher Education Innovation Team Development Plan (NMGIRT2227); Key Project of Inner Mongolia Medical University (YKD2021ZD001)
本文亮点
(1) 成功构建了具有不同拓扑结构的三维生物打印支架。
(2) 证实具有不同拓扑结构的生物三维打印支架会引发不同程度的免疫反应。
(3) 拓扑结构为正三角形的生物三维打印支架通过介导过强的免疫反应使小鼠毛囊周围骨形态发生蛋白2水平升高,抑制脱毛区毛囊进入生长期。
Highlights
(1) The three-dimensional bioprinted scaffolds with different topological structures were successfully constructed.
(2) It was demonstrated that three-dimensional bioprinted scaffolds with different topological structures triggered different immune responses.
(3) The three-dimensional bioprinted scaffolds with positive triangular topology inhibited the hair follicle in depilated area entering into the anagen phase by mediating an excessive immune response to increase bone morphogenetic protein-2 around the hair follicles in mice.
利益冲突 所有作者均声明不存在利益冲突
作者贡献声明 刘清华:设计实验,实施研究,采集、分析、解释数据,撰写文章;李曌、恩和吉日嘎拉:对文章的知识性内容作批评性审阅,技术和材料支持,经费支持;张超、宋薇、王玉振、梁莉婷、张孟德、黄钰岩:实施研究,采集数据,统计学分析;李筱贺、黄沙:酝酿和设计实验,研究过程指导,经费支持,对文章的知识性内容作批评性审阅
Contributor Information
李 筱贺 (Xiaohe Li), Email: 798242742@qq.com.
黄 沙 (Sha Huang), Email: stellarahuang@sina.com.
References
- 1.Shafiee A, Atala A. Tissue engineering: toward a new era of medicine. Annu Rev Med. 2017;68:29–40. doi: 10.1146/annurev-med-102715-092331. [DOI] [PubMed] [Google Scholar]
- 2.Nair A, Tang LP. Influence of scaffold design on host immune and stem cell responses. Semin Immunol. 2017;29:62–71. doi: 10.1016/j.smim.2017.03.001. [DOI] [PubMed] [Google Scholar]
- 3.李 洋, 惠 涛涛, 郑 东梅, et al. 基于三维生物打印技术的皮肤组织工程研究进展. 中华烧伤与创面修复杂志. 2023;39(11):1096–1100. doi: 10.3760/cma.j.cn501225-20230131-00029. [DOI] [Google Scholar]
- 4.Dhania S, Bernela M, Rani R, et al. Scaffolds the backbone of tissue engineering: advancements in use of polyhydroxyalkanoates (PHA) Int J Biol Macromol. 2022;208:243–259. doi: 10.1016/j.ijbiomac.2022.03.030. [DOI] [PubMed] [Google Scholar]
- 5.Abnave P, Ghigo E. Role of the immune system in regeneration and its dynamic interplay with adult stem cells. Semin Cell Dev Biol. 2019;87:160–168. doi: 10.1016/j.semcdb.2018.04.002. [DOI] [PubMed] [Google Scholar]
- 6.Zhang B, Su YC, Zhou JC, et al. Toward a better regeneration through implant-mediated immunomodulation: harnessing the immune responses. Adv Sci (Weinh) 2021;8(16):e2100446. doi: 10.1002/advs.202100446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Jiang ZW, Fu MD, Zhu DJ, et al. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev. 2022;66:53–73. doi: 10.1016/j.cytogfr.2022.05.003. [DOI] [PubMed] [Google Scholar]
- 8.Antmen E, Vrana NE, Hasirci V. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Biomater Sci. 2021;9(24):8090–8110. doi: 10.1039/d1bm00840d. [DOI] [PubMed] [Google Scholar]
- 9.Heinrich MA, Liu WJ, Jimenez A, et al. 3D bioprinting: from benches to translational applications. Small. 2019;15(23):e1805510. doi: 10.1002/smll.201805510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.恩和吉日嘎拉, 张 熠杰, 李 建军, et al. 生物三维打印类细胞外基质硬度对骨髓间充质干细胞向皮肤附属器细胞分化的影响. 中华烧伤杂志. 2020;36(11):1013–1023. doi: 10.3760/cma.j.cn501120-20200811-00375. [DOI] [Google Scholar]
- 11.Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148–163. doi: 10.1007/s10439-016-1612-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Jin S, Yang RL, Chu CY, et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021;129:148–158. doi: 10.1016/j.actbio.2021.05.042. [DOI] [PubMed] [Google Scholar]
- 13.Wang PJ, Sun YZ, Shi XQ, et al. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: a review. Bioact Mater. 2020;6(5):1283–1307. doi: 10.1016/j.bioactmat.2020.10.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Li JJ, Liu YF, Zhang YJ, et al. Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Front Cell Dev Biol. 2021;9:640388. doi: 10.3389/fcell.2021.640388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Wei QH, Zhou JY, An YL, et al. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: a review. Int J Biol Macromol. 2023;232:123450. doi: 10.1016/j.ijbiomac.2023.123450. [DOI] [PubMed] [Google Scholar]
- 16.Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: a state-of-the-art review. Int J Biol Macromol. 2023;253(Pt 5):127143. doi: 10.1016/j.ijbiomac.2023.127143. [DOI] [PubMed] [Google Scholar]
- 17.Li JJ, Zhang YJ, Enhe J, et al. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Mater Sci Eng C Mater Biol Appl. 2021;126:112193. doi: 10.1016/j.msec.2021.112193. [DOI] [PubMed] [Google Scholar]
- 18.Yu XP, Wang YF, Zhang M, et al. 3D printing of gear-inspired biomaterials: immunomodulation and bone regeneration. Acta Biomater. 2023;156:222–233. doi: 10.1016/j.actbio.2022.09.008. [DOI] [PubMed] [Google Scholar]
- 19.Wang YZ, Zhang FL, Yao B, et al. Notch4 participates in mesenchymal stem cell-induced differentiation in 3D-printed matrix and is implicated in eccrine sweat gland morphogenesis[J/OL]. Burns Trauma, 2023, 11: tkad032[2023-10-20]. http://www.ncbi.nlm.nih.gov/pubmed/37397510. DOI: 10.1093/burnst/tkad032.
- 20.Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol. 2009;19(3):R132–142. doi: 10.1016/j.cub.2008.12.005. [DOI] [PubMed] [Google Scholar]
- 21.Wang XS, Chen HY, Tian RY, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091. doi: 10.1038/ncomms14091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Bu WH, Wu YH, Ghaemmaghami AM, et al. Rational design of hydrogels for immunomodulation. Regen Biomater. 2022;9:rbac009. doi: 10.1093/rb/rbac009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Plikus MV, Chuong CM. Complex hair cycle domain patterns and regenerative hair waves in living rodents. J Invest Dermatol. 2008;128(5):1071–1080. doi: 10.1038/sj.jid.5701180. [DOI] [PMC free article] [PubMed] [Google Scholar]