Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 May 15;196(2):591–601. doi: 10.1042/bj1960591

Myofibrillar protein degradation in the chicken. 3-Methylhistidine release in vivo and in vitro in normal and genetically muscular-dystrophic chickens

F Bradley Hillgartner 1, Anne S Williams 1, James A Flanders 1, Dexter Morin 1, Robert J Hansen 1,*
PMCID: PMC1163033  PMID: 7316997

Abstract

Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.

Full text

PDF
591

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asatoor A. M., Armstrong M. D. 3-methylhistidine, a component of actin. Biochem Biophys Res Commun. 1967 Jan 23;26(2):168–174. doi: 10.1016/0006-291x(67)90229-x. [DOI] [PubMed] [Google Scholar]
  2. Ashmore C. R., Doerr L. Oxidative metabolism in skeletal muscle of normal and dystrophic chicks. Biochem Med. 1970 Nov;4(3):246–259. doi: 10.1016/0006-2944(70)90052-9. [DOI] [PubMed] [Google Scholar]
  3. Asmundson V. S., Kratzer F. H., Julian L. M. Inherited myopathy in the chicken. Ann N Y Acad Sci. 1966 Sep 9;138(1):49–60. doi: 10.1111/j.1749-6632.1966.tb41153.x. [DOI] [PubMed] [Google Scholar]
  4. BONETTI E., TOSCHI N. F., LEVI M. Le frazioni del fosforo acido-solubile nella distrofia muscolare progressiva. Sperimentale. 1954 Dec 15;104(11-12):315–325. [PubMed] [Google Scholar]
  5. Bhargava A. K., Barnard E. A., Hudecki M. S. Effects of serotonin antagonists on the development of inherited muscular dystrophy in the chicken. Exp Neurol. 1977 Jun;55(3 Pt 1):583–602. doi: 10.1016/0014-4886(77)90286-2. [DOI] [PubMed] [Google Scholar]
  6. Bilmazes C., Uauy R., Haverberg L. N., Munro H. N., Young V. R. Musle protein breakdown rates in humans based on Ntau-methylhistidine (3-methylhistidine) content of mixed proteins in skeletal muscle and urinary output of Ntau-methylhistidine. Metabolism. 1978 May;27(5):525–530. doi: 10.1016/0026-0495(78)90018-5. [DOI] [PubMed] [Google Scholar]
  7. COWGILL R. W., FREEBURG B. The metabolism of methylhistidine compounds in animals. Arch Biochem Biophys. 1957 Oct;71(2):466–472. doi: 10.1016/0003-9861(57)90059-0. [DOI] [PubMed] [Google Scholar]
  8. Entrikin R. K., Patterson G. T., Weidoff P. M., Wilson B. W. Righting ability and skeletal muscle properties of phenytoin-treated dystrophic chickens. Exp Neurol. 1978 Sep 15;61(3):650–663. doi: 10.1016/0014-4886(78)90030-4. [DOI] [PubMed] [Google Scholar]
  9. Fisher H., Konlande J., Strumeyer D. Levels of histidine and histidine derivatives in breast muscle of protein-depleted and repleted adult cockerels. Nutr Metab. 1975;18(3):120–126. doi: 10.1159/000175586. [DOI] [PubMed] [Google Scholar]
  10. Goodman M. N., Ruderman N. B., Aoki T. T. Glucose and amino acid metabolism in perfused skeletal muscle. Effect of dichloroacetate. Diabetes. 1978 Nov;27(11):1065–1074. doi: 10.2337/diab.27.11.1065. [DOI] [PubMed] [Google Scholar]
  11. Haverberg L. N., Munro H. N., Young V. R. Isolation and quantitation of Ntau-methylhistidine in actin and myosin of rat skeletal muscle: use of pyridine elution of protein hydrolysates on ion-exchange resins. Biochim Biophys Acta. 1974 Nov 5;371(1):226–237. doi: 10.1016/0005-2795(74)90172-x. [DOI] [PubMed] [Google Scholar]
  12. Holliday T. A., Julian L. M., Asmundson V. S. Muscle growth in selected lines of muscular dystrophic chickens. Anat Rec. 1968 Feb;160(2):207–216. doi: 10.1002/ar.1091600207. [DOI] [PubMed] [Google Scholar]
  13. Iodice A. A., Chin J., Perker S., Weinstock I. M. Cathepsins A, B, C, D and autolysis during development of breast muscle of normal and dystrophic chickens. Arch Biochem Biophys. 1972 Sep;152(1):166–174. doi: 10.1016/0003-9861(72)90204-4. [DOI] [PubMed] [Google Scholar]
  14. Jefferson L. S., Li J. B., Rannels S. R. Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J Biol Chem. 1977 Feb 25;252(4):1476–1483. [PubMed] [Google Scholar]
  15. Johnson P., Perry S. V. Biological activity and the 3-methylhistidine content of actin and myosin. Biochem J. 1970 Sep;119(2):293–298. doi: 10.1042/bj1190293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KREBS H. A., BENNETT D. A., DE GASQUET P., GASQUET P., GASCOYNE T., YOSHIDA T. Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidney-cortex slices. Biochem J. 1963 Jan;86:22–27. doi: 10.1042/bj0860022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krzysik B., Vergnes J. P., McManus I. Enzymatic methylation of skeletal muscle contractile proteins. Arch Biochem Biophys. 1971 Sep;146(1):34–45. doi: 10.1016/s0003-9861(71)80038-3. [DOI] [PubMed] [Google Scholar]
  18. Kuehl W. M., Adelstein R. S. The absence of 3-methylhistidine in red, cardiac and fetal myosins. Biochem Biophys Res Commun. 1970 Jun 5;39(5):956–964. doi: 10.1016/0006-291x(70)90417-1. [DOI] [PubMed] [Google Scholar]
  19. Laurent G. J., Millward D. J. Protein turnover during skeletal muscle hypertrophy. Fed Proc. 1980 Jan;39(1):42–47. [PubMed] [Google Scholar]
  20. Laurent G. J., Sparrow M. P., Bates P. C., Millward D. J. Turnover of muscle protein in the fowl (Gallus domesticus). Rates of protein synthesis in fast and slow skeletal, cardiac and smooth muscle of the adult fowl. Biochem J. 1978 Nov 15;176(2):393–401. doi: 10.1042/bj1760393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laurent G. J., Sparrow M. P. Changes in RNA, DNA and protein content and the rates of protein synthesis and degradation during hypertrophy of the anterior latissimus dorsi muscle of the adult fowl (Gallus domesticus). Growth. 1977 Dec;41(4):249–262. [PubMed] [Google Scholar]
  22. Laurent G. J., Sparrow M. P., Millward D. J. Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem J. 1978 Nov 15;176(2):407–417. doi: 10.1042/bj1760407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruyama K., Sunde M. L., Swick R. W. Growth and muscle protein turnover in the chick. Biochem J. 1978 Nov 15;176(2):573–582. doi: 10.1042/bj1760573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McGowan E. B., Shafiq S. A., Stracher A. Delayed degeneration of dystrophic and normal muscle cell cultures treated with pepstatin, leupeptin, and antipain. Exp Neurol. 1976 Mar;50(3):649–657. doi: 10.1016/0014-4886(76)90034-0. [DOI] [PubMed] [Google Scholar]
  25. McKeran R. O., Halliday D., Purkiss P., Royston P. 3-Methylhistidine excretion as an index of myofibrillar protein catabolism in neuromuscular disease. J Neurol Neurosurg Psychiatry. 1979 Jun;42(6):536–541. doi: 10.1136/jnnp.42.6.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mendell J. R., Higgins R., Sahenk Z., Cosmos E. Relevance of genetic animal models of muscular dystrophy to human muscular dystrophies. Ann N Y Acad Sci. 1979;317:409–430. [PubMed] [Google Scholar]
  27. Millward D. J. Protein turnover in skeletal muscle. I. The measurement of rates of synthesis and catabolism of skeletal muscle protein using (14C)Na2CO3 to label protein. Clin Sci. 1970 Nov;39(5):577–590. doi: 10.1042/cs0390577. [DOI] [PubMed] [Google Scholar]
  28. Morey K. S., Tarczy-Horonch K., Brown W. D. Myosin from dystrophic and control chicken muscle. II. Molecular weight, electrophoretic properties, salt sensitivity, aggregation, and amino acid composition. Arch Biochem Biophys. 1968 Mar 20;124(1):521–529. doi: 10.1016/0003-9861(68)90361-5. [DOI] [PubMed] [Google Scholar]
  29. Morgan D. F., Herrmann H. Comparison of muscle tissue from normal and dystrophic chick at different stages of development. Proc Soc Exp Biol Med. 1965 Oct;120(1):68–72. doi: 10.3181/00379727-120-30445. [DOI] [PubMed] [Google Scholar]
  30. PETERSON D. W., LILYBLADE A. L., LYON J. SERINE-ETHANOLAMINE-PHOSPHATE, TAURINE AND FREE AMINO ACIDS OF MUSCLE IN HEREDITARY MUSCULAR DYSTROPHY OF THE CHICKEN. Proc Soc Exp Biol Med. 1963 Aug-Sep;113:798–802. doi: 10.3181/00379727-113-28494. [DOI] [PubMed] [Google Scholar]
  31. Pearson C. M., Kar N. C. Muscle breakdown and lysosomal activation (biochemistry). Ann N Y Acad Sci. 1979;317:465–477. doi: 10.1111/j.1749-6632.1979.tb56562.x. [DOI] [PubMed] [Google Scholar]
  32. Peterson D. W., Lilyblade A. L., Bond D. C. Proteolytic activity during growth of hypertrophic and atrophic muscles of genetically dystrophic chickens. Proc Soc Exp Biol Med. 1972 Dec;141(3):1056–1062. doi: 10.3181/00379727-141-36932. [DOI] [PubMed] [Google Scholar]
  33. Rourke A. W. Myosin in developing normal and dystrophic chicken pectoralis. I. Synthesis and degradation. J Cell Physiol. 1975 Oct;86(2 Pt 2 Suppl 1):343–351. doi: 10.1002/jcp.1040860406. [DOI] [PubMed] [Google Scholar]
  34. Schwartz W., Bird J. W. Degradation of myofibrillar proteins by cathepsins B and D. Biochem J. 1977 Dec 1;167(3):811–820. doi: 10.1042/bj1670811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sola O. M., Christensen D. L., Martin A. W. Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp Neurol. 1973 Oct;41(1):76–100. doi: 10.1016/0014-4886(73)90182-9. [DOI] [PubMed] [Google Scholar]
  36. Stracher A., McGowan E. B., Shafiq S. A. Muscular dystrophy: inhibition of degeneration in vivo with protease inhibitors. Science. 1978 Apr 7;200(4337):50–51. doi: 10.1126/science.635570. [DOI] [PubMed] [Google Scholar]
  37. Stracher A., McGowan E. B., Siemankowski L., Molak V., Shafiq S. A. Relationship between myosin structure and muscle degeneration. Ann N Y Acad Sci. 1979;317:349–355. doi: 10.1111/j.1749-6632.1979.tb56546.x. [DOI] [PubMed] [Google Scholar]
  38. Trayer I. P., Harris C. I., Perry S. V. 3-Methyl histidine and adult and foetal forms of skeletal muscle myosin. Nature. 1968 Feb 3;217(5127):452–453. doi: 10.1038/217452a0. [DOI] [PubMed] [Google Scholar]
  39. WEINSTOCK I. M., LUKACS M. ENZYME STUDIES IN MUSCULAR DYSTROPHY. VI. CATHEPSIN AND ACID DEOXYRIBONUCLEASE ACTIVITIES DURING THE PROGRESSION OF HEREDITARY MUSCULAR DYSTROPHY IN THE CHICKEN. Enzymol Biol Clin (Basel) 1965;19:103–112. [PubMed] [Google Scholar]
  40. Wilson B. W., Randall W. R., Patterson G. T., Entrikin R. K. Major physiologic and histochemical characteristics of inherited dystrophy of the chicken. Ann N Y Acad Sci. 1979;317:224–246. doi: 10.1111/j.1749-6632.1979.tb56531.x. [DOI] [PubMed] [Google Scholar]
  41. Young V. R., Alexis S. D., Baliga B. S., Munro H. N., Muecke W. Metabolism of administered 3-methylhistidine. Lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative. J Biol Chem. 1972 Jun 10;247(11):3592–3600. [PubMed] [Google Scholar]
  42. ZYMARIS M. C., EPSTEIN N., SAIFER A., ARONSON S. M., VOLK B. W. Distribution of acid-soluble nucleotides in hind leg muscles of mice with dystrophia muscularis. Am J Physiol. 1959 May;196(5):1093–1097. doi: 10.1152/ajplegacy.1959.196.5.1093. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES