Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jul 1;197(1):111–117. doi: 10.1042/bj1970111

The relative conformational stability of the alcohol dehydrogenase alleloenzymes of the fruitfly Drosophila melanogaster.

D R Thatcher, R Sheikh
PMCID: PMC1163060  PMID: 6797413

Abstract

The effect of temperature on four purified alleloenzymes of the alcohol dehydrogenase (Adhs, Adhf, AdhD and Adhn-5) of the fruitfly Drosophila melanogaster was investigated in detail. Initial-velocity studies showed that the naturally occurring Adhf and Adhs enzymes differed only in their temperature optima, and evidence of kinetic adaptation to high and low temperature was not apparent. All four alleloenzymes denatured irreversibly on heating purified enzyme solutions at pH 6.0. This technique revealed only small differences in thermostability between Adhf and Adhs, although the two mutant enzymes from AdhD and Adhn-5 were considerably more labile. Electrophoresis of the enzymes though a stable transverse temperature gradient proved to be a discriminating and reproducible technique. Enzymes of different net charge were compared on the same polyacrylamide gel. The Adhf enzyme was shown to be significantly less stable than the Adhs enzyme. Subunit interchange was observed at temperatures below the point at which the unfolding occurred. At pH 4.0, the Adhf/Adhs heterodimer was as stable as the Adhs homodimeric enzyme, and more stable than the Adhf homodimer. Adhn-5 and AdhD alleloenzymes were relatively thermolabile. The stability of the alleloenzymes towards urea denaturation was studied by urea-gradient electrophoresis. Only small differences in stability between the Adhf and Adhs enzymes were observed. The AdhD and Adhn-5 mutants were denatured at the same urea concentration, which was much lower than in the case of the wild-type enzymes. Except at pH 4.0, subunit dissociation could not be distinguished from the unfolding of the monomer.

Full text

PDF
111

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
  2. Briscoe D. A., Robertson A., Malpica J. M. Dominance at Adh locus in response of adult Drosophila melanogaster to environmental alcohol. Nature. 1975 May 8;255(5504):148–149. doi: 10.1038/255148a0. [DOI] [PubMed] [Google Scholar]
  3. Clarke B. The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics. 1975 Jun;79 (Suppl):101–113. [PubMed] [Google Scholar]
  4. Creighton T. E. Kinetic study of protein unfolding and refolding using urea gradient electrophoresis. J Mol Biol. 1980 Feb 15;137(1):61–80. doi: 10.1016/0022-2836(80)90157-6. [DOI] [PubMed] [Google Scholar]
  5. Day T. H., Hillier P. C., Clarke B. Properties of genetically polymorphic isozymes of alcohol dehydrogenase in Drosophila melanogaster. Biochem Genet. 1974 Feb;11(2):141–153. doi: 10.1007/BF00485770. [DOI] [PubMed] [Google Scholar]
  6. Day T. H., Hillier P. C., Clarke B. The relative quantities and catalytic activities of enzymes produced by alleles at the alcohol dehydrogenase locus in Drosophila melanogaster. Biochem Genet. 1974 Feb;11(2):155–165. doi: 10.1007/BF00485771. [DOI] [PubMed] [Google Scholar]
  7. Fujita S. C., Go N., Imahori K. Melting-profile analysis of thermal stability of thermolysin. A formulation of temperature-scanning kinetics. Biochemistry. 1979 Jan 9;18(1):24–28. doi: 10.1021/bi00568a004. [DOI] [PubMed] [Google Scholar]
  8. Gibson J. B., Miklovich R. Modes of variation in alcohol dehydrogenase in Drosophila melanogaster. Experientia. 1971 Jan 15;27(1):99–100. doi: 10.1007/BF02137764. [DOI] [PubMed] [Google Scholar]
  9. Grell E. H., Jacobson K. B., Murphy J. B. Alterations of genetics material for analysis of alcohol dehydrogenase isozymes of Drosophila melanogaster. Ann N Y Acad Sci. 1968 Jun 14;151(1):441–455. doi: 10.1111/j.1749-6632.1968.tb11907.x. [DOI] [PubMed] [Google Scholar]
  10. Kreitman M. Assessment of variability within electromorphs of alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1980 Jun;95(2):467–475. doi: 10.1093/genetics/95.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee C. Y., Charles D., Bronson D. Biochemical analyses of natural and induced null variants of Drosophila enzymes. J Biol Chem. 1979 Jul 25;254(14):6375–6381. [PubMed] [Google Scholar]
  12. Lee C. Y., Lazarus L. H., Kabakoff D. S., Russell P. J., Jr, Laver M., Kaplan N. O. Purification of kinases by general ligand affinity chromatography. Arch Biochem Biophys. 1977 Jan 15;178(1):8–18. doi: 10.1016/0003-9861(77)90165-5. [DOI] [PubMed] [Google Scholar]
  13. Pipkin S. B., Franklin-Springer E., Law S., Lubega S. New studies of the alcohol dehydrogenase cline in D. melanogaster from Mexico. J Hered. 1976 Sep-Oct;67(5):258–266. doi: 10.1093/oxfordjournals.jhered.a108728. [DOI] [PubMed] [Google Scholar]
  14. Retzios A. D., Thatcher D. R. Chemical basis of the electrophoretic variation observed at the alcohol dehydrogenase locus of Drosophila melanogaster. Biochimie. 1979;61(5-6):701–704. doi: 10.1016/s0300-9084(79)80169-8. [DOI] [PubMed] [Google Scholar]
  15. Sampsell B. Isolation and genetic characterization of alcohol dehydrogenase thermostability variants occurring in natural populations of Drosophila melanogaster. Biochem Genet. 1977 Oct;15(9-10):971–988. doi: 10.1007/BF00483992. [DOI] [PubMed] [Google Scholar]
  16. Schwartz M. F., Jörnvall H. Structural analyses of mutant and wild-type alcohol dehydrogenases from drosophila melanogaster. Eur J Biochem. 1976 Sep;68(1):159–168. doi: 10.1111/j.1432-1033.1976.tb10774.x. [DOI] [PubMed] [Google Scholar]
  17. Schwartz M., Sofer W. Alcohol dehydrogenase-negative mutants in Drosophila: defects at the structural locus? Genetics. 1976 May;83(1):125–136. doi: 10.1093/genetics/83.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Somero G. N., Low P. S. Temperature: a "shaping force' in protein evolution. Biochem Soc Symp. 1976;(41):33–42. [PubMed] [Google Scholar]
  19. Thatcher D. R. Enzyme instability and proteolysis during the purification of an alcohol dehydrogenase from Drosophila melanogaster. Biochem J. 1977 May 1;163(2):317–323. doi: 10.1042/bj1630317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thatcher D. R., Hodson B. Denaturation of proteins and nucleic acids by thermal-gradient electrophoresis. Biochem J. 1981 Jul 1;197(1):105–109. doi: 10.1042/bj1970105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thatcher D. R., Sawyer L. Secondary-structure prediction from the sequence of Drosophila melanogaster (fruitfly) alcohol dehydrogenase. Biochem J. 1980 Jun 1;187(3):884–886. doi: 10.1042/bj1870884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ursprung H., Carlin L. Drosophila alcohol dehydrogenase: in vitro changes of isozyme patterns. Ann N Y Acad Sci. 1968 Jun 14;151(1):456–475. doi: 10.1111/j.1749-6632.1968.tb11908.x. [DOI] [PubMed] [Google Scholar]
  23. Vigue C. L., Johnson F. M. Isozyme variability in species of the genus Drosophila. VI. Frequency-property-environment relationships of allelic alcohol dehydrogenases in D. melanogaster. Biochem Genet. 1973 Jul;9(3):213–227. doi: 10.1007/BF00485735. [DOI] [PubMed] [Google Scholar]
  24. Vigue C., Sofer W. Adh-n5: a temperature-sensitive mutant at the Adh locus in Drosophila. Biochem Genet. 1974 May;11(5):387–396. doi: 10.1007/BF00486412. [DOI] [PubMed] [Google Scholar]
  25. Voelker R. A., Cockerham C. C., Johnson F. M., Schaffer H. E., Mukai T., Mettler L. E. Inversions fail to account for allozyme clines. Genetics. 1978 Mar;88(3):515–527. doi: 10.1093/genetics/88.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yoshimaru H., Mukai T. Lack of experimental evidence for frequency-dependent selection at the alcohol dehydrogenase locus in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1979 Feb;76(2):876–878. doi: 10.1073/pnas.76.2.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van Delden W., Boerema A. C., Kamping A. The alcohol dehydrogenase polymorphism in populations of Drosophila melanogaster. I. Selection in different environments. Genetics. 1978 Sep;90(1):161–191. doi: 10.1093/genetics/90.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES