Abstract
The glycoprotein of pig gastric mucus has been isolated free of non-covalently bound protein as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and equilibrium density-gradient centrifugation. After reduction with 0.2 M-mercaptoethanol, protein was released from the glycoprotein, which consisted of a major 70000-mol.wt. component and a minor 60000-mol.wt. component. The 70000-mol.wt. protein fraction was separated from the reduced glycoprotein by either density-gradient centrifugation in CsCl or by gel filtration. Analysis of the 70000-mol.wt. protein fraction showed that, within the limits of the analysis, it was non-glycosylated, and its amino acid analysis was quite different from that of the reduced glycoprotein, which is high in serine, threonine and proline. There was a ratio of one 70000-mol.wt. protein per native glycoprotein molecule of 2 X 10(6) mol.wt. Dissociation of the native glycoprotein into glycoprotein subunits (5 X 10(5) mol.wt.) by reduction or proteolysis results in the release or hydrolysis respectively of the 70000-mol.wt. protein. A similar 70000-mol.wt. protein is demonstrated in human gastric mucus glycoprotein. A structural role for the proteins in these mucus glycoproteins is proposed.
Full text
PDF![155](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/21459549b2a5/biochemj00396-0152.png)
![156](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/129d8329274f/biochemj00396-0153.png)
![157](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/ccc134d83558/biochemj00396-0154.png)
![158](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/ba52943b7421/biochemj00396-0155.png)
![159](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/be3258d5b3cf/biochemj00396-0156.png)
![160](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/962de484276a/biochemj00396-0157.png)
![161](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/0970d3d4e1c9/biochemj00396-0158.png)
![162](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e89/1163065/b4f451f88829/biochemj00396-0159.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen A. Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus. Br Med Bull. 1978 Jan;34(1):28–33. [PubMed] [Google Scholar]
- Clamp J. R. The relationship between secretory immunoglobulin A and mucus [proceedings]. Biochem Soc Trans. 1977;5(5):1579–1581. doi: 10.1042/bst0051579. [DOI] [PubMed] [Google Scholar]
- Creeth J. M., Bhaskar K. R., Horton J. R., Das I., Lopez-Vidriero M. T., Reid L. The separation and characterization of bronchial glycoproteins by density-gradient methods. Biochem J. 1977 Dec 1;167(3):557–569. doi: 10.1042/bj1670557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creeth J. M. Constituents of mucus and their separation. Br Med Bull. 1978 Jan;34(1):17–24. doi: 10.1093/oxfordjournals.bmb.a071454. [DOI] [PubMed] [Google Scholar]
- Gibbons R. A. Mucus of the mammalian genital tract. Br Med Bull. 1978 Jan;34(1):34–38. [PubMed] [Google Scholar]
- Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
- Lamm M. E., Greenberg J. Human secretory component. Comparison of the form occurring in exocrine immunoglobulin A to the free form. Biochemistry. 1972 Jul 18;11(15):2744–2750. doi: 10.1021/bi00765a002. [DOI] [PubMed] [Google Scholar]
- Mantle M., Allen A. A colorimetric assay for glycoproteins based on the periodic acid/Schiff stain [proceedings]. Biochem Soc Trans. 1978;6(3):607–609. doi: 10.1042/bst0060607. [DOI] [PubMed] [Google Scholar]
- Mantle M., Mantle D., Allen A. Polymeric structure of pig small-intestinal mucus glycoprotein. Dissociation by proteolysis or by reduction of disulphide bridges. Biochem J. 1981 Apr 1;195(1):277–285. doi: 10.1042/bj1950277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson J. P., Allen A. A protein of 70 000 molecular weight is joined by disulphide bridges to pig gastric-mucus glycoprotein [proceedings]. Biochem Soc Trans. 1980 Jun;8(3):388–389. doi: 10.1042/bst0080388. [DOI] [PubMed] [Google Scholar]
- Pearson J., Allen A., Venables C. Gastric mucus: isolation and polymeric structure of the undegraded glycoprotein: its breakdown by pepsin. Gastroenterology. 1980 Apr;78(4):709–715. [PubMed] [Google Scholar]
- Roberts G. P. The role of disulfide bonds in maintaining the gel structure of bronchial mucus. Arch Biochem Biophys. 1976 Apr;173(2):528–537. doi: 10.1016/0003-9861(76)90289-7. [DOI] [PubMed] [Google Scholar]
- Rose M. C., Lynn W. S., Kaufman B. Resolution of the major components of human lung mucosal gel and their capabilities for reaggregation and gel formation. Biochemistry. 1979 Sep 4;18(18):4030–4037. doi: 10.1021/bi00585a029. [DOI] [PubMed] [Google Scholar]
- Scawen M., Allen A. The action of proteolytic enzymes on the glycoprotein from pig gastric mucus. Biochem J. 1977 May 1;163(2):363–368. doi: 10.1042/bj1630363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snary D., Allen A., Pain R. H. Structural studies on gastric mucoproteins: lowering of molecular weight after reduction with 2-mercaptoethanol. Biochem Biophys Res Commun. 1970 Aug 24;40(4):844–851. doi: 10.1016/0006-291x(70)90980-0. [DOI] [PubMed] [Google Scholar]
- Starkey B. J., Snary D., Allen A. Characterization of gastric mucoproteins isolated by equilibrium density-gradient centrifugation in caesium chloride. Biochem J. 1974 Sep;141(3):633–639. doi: 10.1042/bj1410633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasi T. B., Jr, Bienenstock J. Secretory immunoglobulins. Adv Immunol. 1968;9:1–96. doi: 10.1016/s0065-2776(08)60441-1. [DOI] [PubMed] [Google Scholar]
- Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]