Abstract
1. A number of reactive triazine dyes specifically and irreversibly inactive yeast hexokinase at pH 8.5 and 33 degrees C. Under these conditions, the enzyme is readily inactivated by 100 microM-Procion Green H-4G, Blue H-B, Turquoise H-7G and Turquoise H-A, is less readily inactivated by Procion Brown H-2G. Green HE-4BD, Red HE-3B and Yellow H-5G and is not inactivated at all by Procion Yellow H-A. 2. The inactivation of hexokinase by Procion Green H-4G is competitively inhibited by the adenine nucleotides ATP and ADP and the sugar substrates D-glucose, D-mannose and D-fructose but not by nonsubstrates such as D-arabinose and D-galactose. 3. Quantitatively inhibited hexokinase contains approx. 1 mol of dye per mol of monomer of mol.wt. 51000. The inhibition is irreversible and activity cannot be recovered on incubation with high concentration (20 mM) of ATP or D-glucose. 4. Mg2+ protects the enzyme against inactivation by Procion Green H-4G but enhances the rate of inactivation by all the other Procion dyes tested. In the presence of 10 mM-Mg2+ the apparent dissociation constant between enzyme and dye is reduced from 199.0 microM to 41.6 microM. Binding of the dye to hexokinase is accompanied by characteristic spectral changes in the range 560-700 nm. 5. Mg2+ promotes binding of yeast hexokinase to agarose-immobilized Procion Green H-4G but not to the other dyes tested. Elution could be effected by omission of Mg2+ from the column irrigants or by inclusion of MgATP or D-glucose, but not by D-galactose. These effects can be exploited to purify hexokinase from crude yeast extracts. 6. The specific active-site-directed binding of triazine dyes to yeast hexokinase is interpreted in terms of the crystallographic structure of the hexokinase monomer.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. M., Zucker F. H., Steitz T. A. Space-filling models of kinase clefts and conformation changes. Science. 1979 Apr 27;204(4391):375–380. doi: 10.1126/science.220706. [DOI] [PubMed] [Google Scholar]
- Apps D. K., Gleed C. D. Interaction of pigeon-liver nicotinamide-adenine dinucleotide kinase with cibacron blue F3GA. Biochem J. 1976 Nov;159(2):441–443. doi: 10.1042/bj1590441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashton A. R., Polya G. M. The specific interaction of cibacron and related dyes with cyclic nucleotide phosphodiesterase and lactate dehydrogenase. Biochem J. 1978 Nov 1;175(2):501–506. doi: 10.1042/bj1750501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baird J. K., Sherwood R. F., Carr R. J., Atkinson A. Enzyme purification by substrate elution chromatography from procion dye-polysaccharide matrices. FEBS Lett. 1976 Nov;70(1):61–66. doi: 10.1016/0014-5793(76)80726-0. [DOI] [PubMed] [Google Scholar]
- Beissner R. S., Rudolph F. B. Interaction of Cibacron Blue 3G-A and related dyes with nucleotide-requiring enzymes. Arch Biochem Biophys. 1978 Jul;189(1):76–80. doi: 10.1016/0003-9861(78)90115-7. [DOI] [PubMed] [Google Scholar]
- Biellmann J. F., Samama J. P., Bränden C. I., Eklund H. X-ray studies of the binding of Cibacron blue F3GA to liver alcohol dehydrogenase. Eur J Biochem. 1979 Dec;102(1):107–110. doi: 10.1111/j.1432-1033.1979.tb06268.x. [DOI] [PubMed] [Google Scholar]
- Blake C. C., Evans P. R. Structure of horse muscle phosphoglycerate kinase. Some results on the chain conformation, substrate binding and evolution of the molecule from a 3 angstrom Fourier map. J Mol Biol. 1974 Apr 25;84(4):585–601. doi: 10.1016/0022-2836(74)90118-1. [DOI] [PubMed] [Google Scholar]
- Blättler W. A., Knowles J. R. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O]triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase. Biochemistry. 1979 Sep 4;18(18):3927–3933. doi: 10.1021/bi00585a013. [DOI] [PubMed] [Google Scholar]
- Brand L., Gohlke J. R. Fluorescence probes for structure. Annu Rev Biochem. 1972;41:843–868. doi: 10.1146/annurev.bi.41.070172.004211. [DOI] [PubMed] [Google Scholar]
- Clonis Y. D., Lowe C. R. Triazine dyes, a new class of affinity labels for nucleotide-dependent enzymes. Biochem J. 1980 Oct 1;191(1):247–251. doi: 10.1042/bj1910247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craven D. B., Harvey M. J., Lowe C. R., Dean P. D. Affinity chromatography on immobilised adenosine 5'-monophosphate. 1. A new synthesis and some properties of an N6-immobilised 5'-AMP. Eur J Biochem. 1974 Jan 16;41(2):329–333. doi: 10.1111/j.1432-1033.1974.tb03273.x. [DOI] [PubMed] [Google Scholar]
- Dean P. D., Watson D. H. Protein purification using immobilised triazine dyes. J Chromatogr. 1979 Oct 1;165(3):301–319. doi: 10.1016/s0021-9673(00)88187-x. [DOI] [PubMed] [Google Scholar]
- Easterday R. L., Easterday I. M. Affinity chromatography of kinases and dehydrogenases on Sephadex and Sepharose dye derivatives. Adv Exp Med Biol. 1974;42(0):123–133. doi: 10.1007/978-1-4684-6982-0_9. [DOI] [PubMed] [Google Scholar]
- Glazer A. N. On the prevalence of "nonspecific" binding at the specific binding sites of globular proteins. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1057–1063. doi: 10.1073/pnas.65.4.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey M. J., Lowe C. R., Craven D. B., Dean P. D. Affinity chromatography on immobilised adenosine 5'-monophosphate. 2. Some parameters relating to the selection and concentration of the immobilised ligand. Eur J Biochem. 1974 Jan 16;41(2):335–340. doi: 10.1111/j.1432-1033.1974.tb03274.x. [DOI] [PubMed] [Google Scholar]
- Jaffe E. K., Cohn M. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. J Biol Chem. 1979 Nov 10;254(21):10839–10845. [PubMed] [Google Scholar]
- KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
- Lowe C. R., Hans M., Spibey N., Drabble W. T. The purification of inosine 5'-monophosphate dehydrogenase from Escherichia coli by affinity chromatography on immobilized Procion dyes. Anal Biochem. 1980 May 1;104(1):23–28. doi: 10.1016/0003-2697(80)90271-7. [DOI] [PubMed] [Google Scholar]
- Lowe C. R., Small D. A., Atkinson A. Some preparative and analytical applications of triazine dyes. Int J Biochem. 1981;13(1):33–40. doi: 10.1016/0020-711x(81)90133-6. [DOI] [PubMed] [Google Scholar]
- Messenger L. J., Zalkin H. Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties. J Biol Chem. 1979 May 10;254(9):3382–3392. [PubMed] [Google Scholar]
- Moe J. G., Piszkiewicz D. Isoleucyl transfer ribonucleic acid synthetase. Competitive inhibition with respect to transfer ribonucleic acid by blue dextran. Biochemistry. 1979 Jun 26;18(13):2810–2814. doi: 10.1021/bi00580a019. [DOI] [PubMed] [Google Scholar]
- Moe J. G., Piszkiewicz D. Purification of isoleucyl transfer ribonucleic acid synthetase by affinity chromatography on blue dextran-sepharose. FEBS Lett. 1976 Dec 15;72(1):147–150. doi: 10.1016/0014-5793(76)80832-0. [DOI] [PubMed] [Google Scholar]
- Morrill M. E., Thompson S. T., Stellwagen E. Purification of a cyclic nucleotide phosphodiesterase from bovine brain using blue dextran-Sepharose chromatography. J Biol Chem. 1979 Jun 10;254(11):4371–4374. [PubMed] [Google Scholar]
- Noat G., Ricard J., Borel M., Got C. Etude directe, par dialyse sur sephadex G-25, de la formation d'un complexe entre l'hexokinase de levure et ses substrats. Eur J Biochem. 1969 Nov;11(1):106–112. doi: 10.1111/j.1432-1033.1969.tb00746.x. [DOI] [PubMed] [Google Scholar]
- Otieno S., Bhargava A. K., Serelis D., Barnard E. A. Evidence for a single essential thiol in the yeast hexokinase molecule. Biochemistry. 1977 Sep 20;16(19):4249–4255. doi: 10.1021/bi00638a019. [DOI] [PubMed] [Google Scholar]
- Perrin J. H., Hart P. A. Small molecule-macromolecular interactions as studied by optical rotatory dispersion--circular dichroism. J Pharm Sci. 1970 Apr;59(4):431–448. doi: 10.1002/jps.2600590402. [DOI] [PubMed] [Google Scholar]
- Steitz T. A., Fletterick R. J., Hwang K. J. Structure of yeast hexokinase. II. A 6 angstrom resolution electron density map showing molecular shape and heterologous interaction of subunits. J Mol Biol. 1973 Aug 15;78(3):551–561. doi: 10.1016/0022-2836(73)90475-0. [DOI] [PubMed] [Google Scholar]
- Thompson S. T., Stellwagen E. Binding of Cibacron blue F3GA to proteins containing the dinucleotide fold. Proc Natl Acad Sci U S A. 1976 Feb;73(2):361–365. doi: 10.1073/pnas.73.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J. E. Applications of blue dextran and Cibacron Blue F3GA in purification and structural studies of nucleotide-requiring enzymes. Biochem Biophys Res Commun. 1976 Oct 4;72(3):816–823. doi: 10.1016/s0006-291x(76)80206-9. [DOI] [PubMed] [Google Scholar]
- Witt J. J., Roskoski R., Jr Adenosine cyclic 3',5'-monophosphate dependent protein kinase: active site directed inhibition by Cibacron Blue F3GA. Biochemistry. 1980 Jan 8;19(1):143–148. doi: 10.1021/bi00542a022. [DOI] [PubMed] [Google Scholar]
