Abstract
Mitochondrial preparations derived from denervated rat skeletal muscle and paired controls were characterized with respect to their ability to take up externally added Ca2+. The denervated and control muscle homogenates and mitochondrial [Ca2+] were also determined. Our data indicate that the denervated mitochondria are able to take up less Ca2+ than the controls before uncoupling occurs. This defect is associated with elevated [Ca2+] in homogenate and mitochondrial fractions in the denervated state. The causal relationship between Ca2+ overload, mitochondrial functional damage and cell necrosis is discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bradley W. G. Cell membrane abnormalities and muscular dystrophy. Muscle Nerve. 1980 Jan-Feb;3(1):1–2. doi: 10.1002/mus.880030102. [DOI] [PubMed] [Google Scholar]
- Bragadin M., Pozzan T., Azzone G. F. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry. 1979 Dec 25;18(26):5972–5978. doi: 10.1021/bi00593a033. [DOI] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Cangiano A., Lutzemberger L. Partial denervation in inactive muscle effects innervated and denervated fibres equally. Nature. 1980 May 22;285(5762):233–235. doi: 10.1038/285233a0. [DOI] [PubMed] [Google Scholar]
- Carafoli E. The calcium cycle of mitochondria. FEBS Lett. 1979 Aug 1;104(1):1–5. doi: 10.1016/0014-5793(79)81073-x. [DOI] [PubMed] [Google Scholar]
- Crompton M., Carafoli E. The measurement of Ca2+ movements in mitochondria. Methods Enzymol. 1979;56:338–352. doi: 10.1016/0076-6879(79)56031-5. [DOI] [PubMed] [Google Scholar]
- Crompton M. The sodium ion/calcium ion cycle of cardiac mitochondria. Biochem Soc Trans. 1980 Jun;8(3):261–262. doi: 10.1042/bst0080261. [DOI] [PubMed] [Google Scholar]
- Cullen M. J., Pluskal M. G. Early changes in the ultrastructure of denervated rat skeletal muscle. Exp Neurol. 1977 Jul;56(1):115–131. doi: 10.1016/0014-4886(77)90143-1. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan C. J. Role of intracellular calcium in promoting muscle damage: a strategy for controlling the dystrophic condition. Experientia. 1978 Dec 15;34(12):1531–1535. doi: 10.1007/BF02034655. [DOI] [PubMed] [Google Scholar]
- Duque-Magalhães M. C. On a neutral proteolytic system in rat liver mitochondria. FEBS Lett. 1979 Sep 15;105(2):317–320. doi: 10.1016/0014-5793(79)80638-9. [DOI] [PubMed] [Google Scholar]
- Fiskum G., Lehninger A. L. The mechanisms and regulation of mitochondrial Ca2+ transport. Fed Proc. 1980 May 15;39(7):2432–2436. [PubMed] [Google Scholar]
- Gear A. R., Albert A. D., Bednarek J. M. The effect of the hypocholesterolemic drug clofibrate on liver mitochondrial biogenesis. A role for neutral mitochondrial proteases. J Biol Chem. 1974 Oct 25;249(20):6495–6504. [PubMed] [Google Scholar]
- Gerard K. W., Schneider D. L. Evidence for degradation of myofibrillar proteins in lysosomes. Myofibrillar proteins derivatized by intramuscular injection of N-ethylmaleimide are sequestered in lysosomes. J Biol Chem. 1979 Dec 10;254(23):11798–11805. [PubMed] [Google Scholar]
- Haas R., Heinrich P. C. A novel SH-type carboxypeptidase in the inner membrane of rat-liver mitochondria. Eur J Biochem. 1979 May 2;96(1):9–15. doi: 10.1111/j.1432-1033.1979.tb13007.x. [DOI] [PubMed] [Google Scholar]
- Haas R., Heinrich P. C. Cleavage specificity of the serine proteinase from rat liver mitochondria. Biochem Biophys Res Commun. 1978 Dec 14;85(3):1039–1046. doi: 10.1016/0006-291x(78)90647-2. [DOI] [PubMed] [Google Scholar]
- Haas R., Heinrich P. C. The localization of an intracellular membrane-bound proteinase from rat liver. Eur J Biochem. 1978 Nov 2;91(1):171–178. doi: 10.1111/j.1432-1033.1978.tb20949.x. [DOI] [PubMed] [Google Scholar]
- Haworth R. A., Hunter D. R. Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol. 1980 Jun 15;54(3):231–236. doi: 10.1007/BF01870239. [DOI] [PubMed] [Google Scholar]
- Hunter D. R., Haworth R. A. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys. 1979 Jul;195(2):453–459. doi: 10.1016/0003-9861(79)90371-0. [DOI] [PubMed] [Google Scholar]
- Jasmin G., Solymoss B., Proschek L. Therapeutic trials in hamster dystrophy. Ann N Y Acad Sci. 1979;317:338–348. doi: 10.1111/j.1749-6632.1979.tb56544.x. [DOI] [PubMed] [Google Scholar]
- Kar N. C., Pearson C. M. A calcium-activated neutral protease in normal and dystrophic human muscle. Clin Chim Acta. 1976 Dec 1;73(2):293–297. doi: 10.1016/0009-8981(76)90175-3. [DOI] [PubMed] [Google Scholar]
- Lee C. P., Martens M. E., Jankulovska L., Neymark M. A. Defective oxidative metabolism of myodystrophic skeletal muscle mitochondria. Muscle Nerve. 1979 Sep-Oct;2(5):340–348. doi: 10.1002/mus.880020504. [DOI] [PubMed] [Google Scholar]
- Leonard J. P., Salpeter M. M. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J Cell Biol. 1979 Sep;82(3):811–819. doi: 10.1083/jcb.82.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lötscher H. R., Winterhalter K. H., Carafoli E., Richter C. Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4340–4344. doi: 10.1073/pnas.76.9.4340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malvey J. E., Schottelius D. D., Schottelius B. A. Energy reserves and chemical changes in denervated anterior and posterior latissimus dorsi muscles of the chicken. Exp Neurol. 1971 Oct;33(1):171–180. doi: 10.1016/0014-4886(71)90111-7. [DOI] [PubMed] [Google Scholar]
- Mezon B. J., Wrogemann K., Blanchaer M. C. Differing populations of mitochondria isolated from the skeletal muscle of normal and dystrophic hamsters. Can J Biochem. 1974 Nov;52(11):1024–1032. doi: 10.1139/o74-143. [DOI] [PubMed] [Google Scholar]
- Neerunjun J. S., Dubowitz V. Increased calcium-activated neutral protease activity in muscles of dystrophic hamsters and mice. J Neurol Sci. 1979 Feb;40(2-3):105–111. doi: 10.1016/0022-510x(79)90196-5. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G., Scott I. D. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J. 1980 Mar 15;186(3):833–839. doi: 10.1042/bj1860833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panfili E., Sottocasa G. L., Sandri G., Liut G. The Ca2+-binding glycoprotein as the site of metabolic regulation of mitochondrial Ca2+ movements. Eur J Biochem. 1980 Mar;105(1):205–210. doi: 10.1111/j.1432-1033.1980.tb04490.x. [DOI] [PubMed] [Google Scholar]
- Pfeiffer D. R., Schmid P. C., Beatrice M. C., Schmid H. H. Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function. J Biol Chem. 1979 Nov 25;254(22):11485–11494. [PubMed] [Google Scholar]
- Pichey E. L., Smith P. B. Denervation and developmental alterations of glycogen synthase and glycogen phosphorylase in mammalian skeletal muscle. Exp Neurol. 1979 Jul;65(1):118–130. doi: 10.1016/0014-4886(79)90253-x. [DOI] [PubMed] [Google Scholar]
- Pleasure D., Wyszynski B., Sumner A., Schotland D., Feldman B., Nugent N., Hitz K., Goodman D. B. Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest. 1979 Nov;64(5):1157–1167. doi: 10.1172/JCI109569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Publicover S. J., Duncan C. J., Smith J. L. The use of A23187 to demonstrate the role of intracellular calcium in causing ultrastructural damage in mammalian muscle. J Neuropathol Exp Neurol. 1978 Sep;37(5):554–557. [PubMed] [Google Scholar]
- Ringel S. P., Bender A. N., Engel W. K. Extrajunctional acetylcholine receptors. Alterations in human and experimental neuromuscular diseases. Arch Neurol. 1976 Nov;33(11):751–758. doi: 10.1001/archneur.1976.00500110019004. [DOI] [PubMed] [Google Scholar]
- Rowland L. P. Biochemistry of muscle membranes in Duchenne muscular dystrophy. Muscle Nerve. 1980 Jan-Feb;3(1):3–20. doi: 10.1002/mus.880030103. [DOI] [PubMed] [Google Scholar]
- Schotland D. L., DiMauro S., Bonilla E., Scarpa A., Lee C. P. Neuromuscular disorder associated with a defect in mitochondrial energy supply. Arch Neurol. 1976 Jul;33(7):475–479. doi: 10.1001/archneur.1976.00500070017003. [DOI] [PubMed] [Google Scholar]
- Wrogemann K., Blanchaer M. C., Jacobson B. E. A calcium-associated magnesium-responsive defect of respiration and oxidative phosphorylation by skeletal muscle mitochondria of BIO 14.6 dystrophic hamsters. Life Sci II. 1970 Oct 22;9(20):1167–1173. doi: 10.1016/0024-3205(70)90035-4. [DOI] [PubMed] [Google Scholar]
- Wrogemann K., Pena S. D. Mitochondrial calcium overload: A general mechanism for cell-necrosis in muscle diseases. Lancet. 1976 Mar 27;1(7961):672–674. doi: 10.1016/s0140-6736(76)92781-1. [DOI] [PubMed] [Google Scholar]