Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jun 15;196(3):675–681. doi: 10.1042/bj1960675

An alternative pathway for the biosynthesis of isoprenoid compounds in bacteria.

S Pandian, S Saengchjan, T S Raman
PMCID: PMC1163085  PMID: 6274317

Abstract

The pattern of incorporation of radioactivity from [1-14C]acetate and [2-14C]acetate into the polyprenyl side-chain of ubiquinones in bacteria (Azotobacter vinelandii, Pseudomonas sesami, Escherichia coli and Rhodopseudomonas capsulata) was studied. For this purpose, a new degradation method involving a modified Barbier-Wieland reaction of laevulinic acid was developed, and used along with the iodoform reaction. Both C-1 and C-2 of acetate were incorporated exclusively into C-2 of laevulinic acid suggesting that the well-known pathway through acetoacetyl-CoA ('acetoacetate pathway') was not operative in these bacteria. An alternative pathway ('acetolactate pathway'), starting with pyruvate and acetaldehyde as the distal precursors, and utilizing the reactions of leucine and valine metabolism, was postulated. It was also postulated that C-1 of acetate is incorporated not directly, but after oxidation to CO2. The pattern of incorporation of radioactivity from [U-14C]valine, [U-14C]alanine and NaH14CO3 into the side-chain of ubiquinone of R. capsulata was in agreement with the operation of the 'acetolactate pathway'.

Full text

PDF
675

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C. M., Alworth W., Macrae A., Bloch K. A long chain terpenyl pyrophosphate synthetase from Micrococcus lysodeikticus. J Biol Chem. 1967 Apr 25;242(8):1895–1902. [PubMed] [Google Scholar]
  2. BRAITHWAITE G. D., GOODWIN T. W. Studies in carotenogenesis. 26. The incorporation of [C14] acetate, [C14] mevalonate and C14-labelled carbon dioxide into beta-carotene by the fungus Phycomyces blakesleeanus. Biochem J. 1960 Jul;76:5–10. doi: 10.1042/bj0760005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRODIE J. D., WASSON G., PORTER J. W. The participation of malonyl coenzyme A in the biosynthesis of mevalonic acid. J Biol Chem. 1963 Apr;238:1294–1301. [PubMed] [Google Scholar]
  4. CHICHESTER C. O., YOKOYAMA H., NAKAYAMA T. O., LUKTON A., MACKINNEY G. Leucine metabolism and carotene biosynthesis. J Biol Chem. 1959 Mar;234(3):598–602. [PubMed] [Google Scholar]
  5. CORNFORTH J. W., POPJAK G. Studies on the biosynthesis of cholesterol. 3. Distribution of 14C in squalene biosynthesized from [Me-14C]acetate. Biochem J. 1954 Nov;58(3):403–407. doi: 10.1042/bj0580403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Rosa M., De Rosa S., Gambacorta A., Minale L. Caldariellaquinone, a unique benzo(b)thiophen-4,7-quinone from Caldariella acidophila, an extremely thermophilic and acidophilic bacterium. J Chem Soc Perkin 1. 1977;(6):653–657. doi: 10.1039/p19770000653. [DOI] [PubMed] [Google Scholar]
  7. Durr I. F., Habbal M. Z. The biosynthesis of C 55 polyprenols by a cell-free preparation of Lactobacillus plantarum. Biochem J. 1972 Apr;127(2):345–349. doi: 10.1042/bj1270345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Higgins M. J., Kekwick R. G. An investigation into the role of malonyl-coenzyme A in isoprenoid biosynthesis. Biochem J. 1973 May;134(1):295–310. doi: 10.1042/bj1340295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  10. PARK R. B., BONNER J. Enzymatic synthesis of rubber from mevalonic acid. J Biol Chem. 1958 Aug;233(2):340–343. [PubMed] [Google Scholar]
  11. PARSON W. W., RUDNEY H. THE BIOSYNTHESIS OF THE BENZOQUINONE RING OF UBIQUINONE FROM P-HYDROXYBENZALDEHYDE AND P-HYDROXYBENZOIC ACID IN RAT KIDNEY, AZOTOBACTER VINELANDII, AND BAKER'S YEAST. Proc Natl Acad Sci U S A. 1964 Mar;51:444–450. doi: 10.1073/pnas.51.3.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RAMAN T. S., SHARMA B. V., JAYARAMAN J., RAMASARMA T. BIOSYNTHESIS OF COENZYME Q IN MICROORGANISMS. Arch Biochem Biophys. 1965 Apr;110:75–84. doi: 10.1016/0003-9861(65)90156-6. [DOI] [PubMed] [Google Scholar]
  13. Raman T. S., Rudney H., Buzzelli N. K. The incorporation of p-hydroxybenzoate and isopentenyl pyrophosphate into polyprenylphenol precursors of ubiquinone by broken cell preparations of Rhodospirillum rubrum. Arch Biochem Biophys. 1969 Mar;130(1):164–174. doi: 10.1016/0003-9861(69)90022-8. [DOI] [PubMed] [Google Scholar]
  14. THORNE K. J., KODICEK E. The metabolism of acetate and mevalonic acid by lactob cilli. III. Studies on the unsaponifiable lipids derived from mevalonic acid. Biochim Biophys Acta. 1962 May 21;59:295–306. doi: 10.1016/0006-3002(62)90177-4. [DOI] [PubMed] [Google Scholar]
  15. Thorne K. J., Kodicek E. The structure of bactoprenol, a lipid formed by lactobacilli from mevalonic acid. Biochem J. 1966 Apr;99(1):123–127. doi: 10.1042/bj0990123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES