Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jun 15;196(3):795–801. doi: 10.1042/bj1960795

Role of calcium in the modulation of ornithine decarboxylase activity in isolated pig granulosa cells in vitro

Johannes D Veldhuis 1, James M Hammond 1
PMCID: PMC1163100  PMID: 6172119

Abstract

We examined the role of Ca2+ in the control of basal and hormone-stimulated ornithine decarboxylase activity in isolated pig granulosa cells maintained under chemically defined conditions in vitro. Omission of Ca2+ from the incubation medium (measured Ca2+ concentration 5μm) decreased basal enzymic activity, and significantly (P<0.01) impaired the response to maximally stimulating doses of either lutropin or follitropin. No significant alteration occurred in the concentration of either gonadotropin required to elicit half-maximal effects. The addition of EGTA (1.27–2.0mm) to chelate residual extracellular Ca2+ further decreased hormone-induced rises in ornithine decarboxylase activity. Despite the presence of 1.27mm concentrations of extracellular Ca2+, the administration of presumptive Ca2+ antagonists, believed to impair trans-membrane Ca2+ influx [verapamil (10–100μm), nifedipine (1–100μm) or CoCl2 (1mm)] suppressed hormone-stimulated ornithine decarboxylase activity. The inhibitory effects of verapamil or of Ca2+ omission from the medium were not overcome by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.25mm), or by cholera toxin, or by an exogenously supplied cyclic AMP analogue, 8-bromo cyclic AMP. Conversely, micromolar concentrations of a putative bivalent-cation ionophore, A23187, increased significantly the stimulation of ornithine decarboxylase activity by saturating concentrations of lutropin or 8-bromo cyclic AMP. Thus the present observations implicate Ca2+ ions in the modulation of hormone action and cellular function in normal ovarian cells.

Full text

PDF
795

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Meves H., Ridgway E. B. Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons. J Physiol. 1973 Jun;231(3):511–526. doi: 10.1113/jphysiol.1973.sp010246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betteridge A. Role of Ca2+ and cyclic nucleotides in the control of prostaglandin E production in the rat anterior pituitary gland. Biochem J. 1980 Mar 15;186(3):987–992. doi: 10.1042/bj1860987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borowitz J. L., Matthews E. K. Calcium exchangeability in subcellular fractions of pancreatic islet cells. J Cell Sci. 1980 Feb;41:233–243. doi: 10.1242/jcs.41.1.233. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brostrom M. A., Brostrom C. O., Wolff D. J. Calcium dependence of hormone-stimulated cAMP accumulation in intact glial tumor cells. J Biol Chem. 1979 Aug 25;254(16):7548–7557. [PubMed] [Google Scholar]
  6. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  8. Costa M., Nye J. S. Calcium, asparagine and cAMP are required for ornithine decarboxylase activation in intact Chinese hamster ovary cells. Biochem Biophys Res Commun. 1978 Dec 14;85(3):1156–1164. doi: 10.1016/0006-291x(78)90663-0. [DOI] [PubMed] [Google Scholar]
  9. Costa M. The regulation of ornithine decarboxylase activity in intact normal and transformed cells maintained with a minimal salts/glucose medium. Life Sci. 1979 Dec 10;25(24-25):2113–2124. doi: 10.1016/0024-3205(79)90205-4. [DOI] [PubMed] [Google Scholar]
  10. Cuprak L. J., Lammi C. J., Crane J. I. Improved basal medium for Y-1 mouse adrenal cortex tumor cells in culture. I. Dependence of growth and steroid response on calcium ion concentration. In Vitro. 1979 Nov;15(11):900–909. doi: 10.1007/BF02618047. [DOI] [PubMed] [Google Scholar]
  11. Eto S., Wood J. M., Hutchins M., Fleischer N. Pituitary 45 Ca ion uptake and release of ACTH, GH, and TSH: effect of verapamil. Am J Physiol. 1974 Jun;226(6):1315–1320. doi: 10.1152/ajplegacy.1974.226.6.1315. [DOI] [PubMed] [Google Scholar]
  12. Garcia A. G., Kirpekar S. M., Prat J. C. A calcium ionophore stimulating the secretion of catecholamines from the cat adrenal. J Physiol. 1975 Jan;244(1):253–262. doi: 10.1113/jphysiol.1975.sp010795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geisow M. J. Calcium control of enzyme reactions. Nature. 1978 Nov 16;276(5685):211–212. doi: 10.1038/276211a0. [DOI] [PubMed] [Google Scholar]
  14. Gibbs J. B., Hsu C. Y., Terasaki W. L., Brooker G. Calcium and microtubule dependence for increased ornithine decarboxylase activity stimulated by beta-adrenergic agonists, dibutyryl cyclic AMP, or serum in a rat astrocytoma cell line. Proc Natl Acad Sci U S A. 1980 Feb;77(2):995–999. doi: 10.1073/pnas.77.2.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  16. Higuchi T., Kaneko A., Abel J. H., Jr, Niswender G. D. Relationship between membrane potential and progesterone release in ovine corpora lutea. Endocrinology. 1976 Oct;99(4):1023–1032. doi: 10.1210/endo-99-4-1023. [DOI] [PubMed] [Google Scholar]
  17. Jackowski M. M., Johnson R. A., Exton J. H. Calcium regulation of guanine nucleotide activation of hepatic adenylate cyclase. Biochim Biophys Acta. 1980 Jul 15;630(4):497–510. doi: 10.1016/0304-4165(80)90004-5. [DOI] [PubMed] [Google Scholar]
  18. Janszen F. H., Cooke B. A., Van Driel M. J., Van Der Molen H. J. The effect of calcium ions on testosterone production in Leydig cells from rat testis. Biochem J. 1976 Dec 15;160(3):433–437. doi: 10.1042/bj1600433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  20. Kneer N. M., Wagner M. J., Lardy H. A. Regulation by calcium of hormonal effects on gluconeogenesis. J Biol Chem. 1979 Dec 10;254(23):12160–12168. [PubMed] [Google Scholar]
  21. Kürzinger K., Stadtkus C., Hamprecht B. Uptake and energy-dependent extrusion of calcium in neural cells in culture. Eur J Biochem. 1980 Feb;103(3):597–611. doi: 10.1111/j.1432-1033.1980.tb05985.x. [DOI] [PubMed] [Google Scholar]
  22. Lefkowitz R. J., Roth J., Pastan I. Effects of calcium on ACTH stimulation of the adrenal: separation of hormone binding from adenyl cyclase activation. Nature. 1970 Nov 28;228(5274):864–866. doi: 10.1038/228864a0. [DOI] [PubMed] [Google Scholar]
  23. Mahaffee D. D., Ontjes D. A. The role of calcium in the control of adrenal adenylate cyclase. Enhancement of enzyme activation by guanyl-5'-yl imidodiphosphate. J Biol Chem. 1980 Feb 25;255(4):1565–1571. [PubMed] [Google Scholar]
  24. Malaisse W. J., Boschero A. C. Calcium antagonists and islet function. XI. Effect of nifedipine. Horm Res. 1977;8(4):203–209. doi: 10.1159/000178801. [DOI] [PubMed] [Google Scholar]
  25. Malaisse W. J., Valverde I., Devis G., Somers G., Couturier E. Ionophore-mediated cation translocation in artificial systems. I. A23187-mediated calcium translocation. Biochimie. 1979;61(10):1185–1192. doi: 10.1016/s0300-9084(80)80232-x. [DOI] [PubMed] [Google Scholar]
  26. Marian J., Conn P. M. The calcium requirement in GnRH-stimulated LH release is not mediated through a specific action on receptor binding. Life Sci. 1980 Jul 7;27(1):87–92. doi: 10.1016/0024-3205(80)90022-3. [DOI] [PubMed] [Google Scholar]
  27. Maudsley D. V. Regulation of polyamine biosynthesis. Biochem Pharmacol. 1979;28(2):153–161. doi: 10.1016/0006-2952(79)90496-9. [DOI] [PubMed] [Google Scholar]
  28. McDonald J. M., Bruns D. E., Jarett L., Davis J. E. A rapid microtechnique for the preparation of biological material for the simultaneous analysis of calcium, magnesium and protein. Anal Biochem. 1977 Oct;82(2):485–492. doi: 10.1016/0003-2697(77)90187-7. [DOI] [PubMed] [Google Scholar]
  29. Murphy E., Coll K. E., Viale R. O., Tischler M. E., Williamson J. R. Kinetics and regulation of the glutamate-aspartate translocator in rat liver mitochondria. J Biol Chem. 1979 Sep 10;254(17):8369–8376. [PubMed] [Google Scholar]
  30. Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
  31. Osterman J., Demers L. M., Hammond J. M. Gonadotropin stimulation of porcine ovarian ornithine decarboxylase in vitro: the role of 3',5'-adenosine monophosphate. Endocrinology. 1978 Nov;103(5):1718–1724. doi: 10.1210/endo-103-5-1718. [DOI] [PubMed] [Google Scholar]
  32. Osterman J., Hammond J. M. FSH and LH stimulation of ornithine decarboxylase activity: studies with porcine granulosa cells in vitro. Endocrinology. 1977 Oct;101(4):1335–1338. doi: 10.1210/endo-101-4-1335. [DOI] [PubMed] [Google Scholar]
  33. Pegg A. E., Lockwood D. H., Williams-Ashman H. G. Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth. Biochem J. 1970 Mar;117(1):17–31. doi: 10.1042/bj1170017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Perchellet J. P., Sharma R. K. Mediatory role of calcium and guanosine 3', 5'-monophosphate in adrenocorticotropin-induced steroidogenesis by adrenal cells. Science. 1979 Mar 23;203(4386):1259–1261. doi: 10.1126/science.34216. [DOI] [PubMed] [Google Scholar]
  35. Perry J. W., Oka T. Regulation of ornithine decarboxylase in cultured mouse mammary gland by the osmolarity in the cellular environment. Biochim Biophys Acta. 1980 Apr 17;629(1):24–35. doi: 10.1016/0304-4165(80)90261-5. [DOI] [PubMed] [Google Scholar]
  36. Podesta E. J., Milani A., Steffen H., Neher R. Steroidogenic action of calcium ions in isolated adrenocortical cells. Biochem J. 1980 Feb 15;186(2):391–397. doi: 10.1042/bj1860391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pressman B. C. Properties of ionophores with broad range cation selectivity. Fed Proc. 1973 Jun;32(6):1698–1703. [PubMed] [Google Scholar]
  38. Putney J. W., Jr Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev. 1978 Jun;30(2):209–245. [PubMed] [Google Scholar]
  39. Rasmussen H., Goodman D. B. Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev. 1977 Jul;57(3):421–509. doi: 10.1152/physrev.1977.57.3.421. [DOI] [PubMed] [Google Scholar]
  40. Russell D. H. Ornithine decarboxylase as a biological and pharmacological tool. Pharmacology. 1980;20(3):117–129. doi: 10.1159/000137355. [DOI] [PubMed] [Google Scholar]
  41. Steinhardt R. A., Epel D. Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A. 1974 May;71(5):1915–1919. doi: 10.1073/pnas.71.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Veldhuis J. D., Hammond J. M. Role of ornithine decarboxylase in granulosa-cell replication and steroidogenesis in vitro. Biochem Biophys Res Commun. 1979 Dec 14;91(3):770–777. doi: 10.1016/0006-291x(79)91946-6. [DOI] [PubMed] [Google Scholar]
  43. Weissmann G., Anderson P., Serhan C., Samuelsson E., Goodman E. A general method, employing arsenazo III in liposomes, for study of calcium ionophores: results with A23187 and prostaglandins. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1506–1510. doi: 10.1073/pnas.77.3.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Whitfield J. F., Boynton A. L., MacManus J. P., Sikorska M., Tsang B. K. The regulation of cell proliferation by calcium and cyclic AMP. Mol Cell Biochem. 1979 Nov 1;27(3):155–179. doi: 10.1007/BF00215364. [DOI] [PubMed] [Google Scholar]
  45. Yagura T. S., Miller J. P. Activation of type I and type II cyclic AMP-dependent protein kinases by 2,8-disubstituted derivatives of cyclic AMP. Biochim Biophys Acta. 1980 Jul 3;630(3):463–467. doi: 10.1016/0304-4165(80)90296-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES