Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jun 15;196(3):803–809. doi: 10.1042/bj1960803

2-Mercaptoacetate administration depresses the beta-oxidation pathway through an inhibition of long-chain acyl-CoA dehydrogenase activity.

F Bauché, D Sabourault, Y Giudicelli, J Nordmann, R Nordmann
PMCID: PMC1163101  PMID: 7317017

Abstract

To elucidate the mechanisms through which 2-mercaptoacetate administration inhibits fatty acid oxidation in the liver, the respiration rates induced by different substrates were studied polarographically in rat hepatic mitochondria isolated 3 h after 2-mercaptoacetate administration. Palmitoyl-L-carnitine oxidation was almost completely inhibited in either the absence or presence of malonate. Octanoate oxidation was also inhibited, and the intramitochondrial acyl-CoA content was markedly increased. The oxidation rate of pyruvate and 2-oxoglutarate on the one hand and of 3-hydroxybutyrate, succinate and glutamate on the other was either normal or only slightly decreased. In the presence of 2,4-dinitrophenol, the extent of the inhibition of palmitoyl-L-carnitine oxidation was unchanged. All these results are consistent with the hypothesis that the 2-mercaptoacetate inhibition of fatty acid oxidation is due to an inhibition of the beta-oxidation pathway itself. Finally, the mitochondrial defect responsible for this inhibition was shown to be an inhibition of palmitoyl-CoA dehydrogenase activity (EC 1.3.99.3).

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batenburg J. J., van den Bergh S. G. The mechanism of inhibition by fluoride of fatty acid oxidation in uncoupled mitochondria. Biochim Biophys Acta. 1973 Aug 23;316(2):136–142. doi: 10.1016/0005-2760(73)90003-9. [DOI] [PubMed] [Google Scholar]
  2. Beattie D. S. Enzyme localization in the inner and outer membranes of rat liver mitochondria. Biochem Biophys Res Commun. 1968 Jun 28;31(6):901–907. doi: 10.1016/0006-291x(68)90537-8. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  4. Cederbaum A. I., Rubin E. Protective effect of cysteine on the inhibition of mitochondrial functions by acetaldehyde. Biochem Pharmacol. 1976 Apr 15;25(8):963–973. doi: 10.1016/0006-2952(76)90323-3. [DOI] [PubMed] [Google Scholar]
  5. Christophersen B. O., Bremer J. Erucic acid--an inhibitor of fatty acid oxidation in the heart. Biochim Biophys Acta. 1972 Dec 8;280(4):506–514. doi: 10.1016/0005-2760(72)90130-0. [DOI] [PubMed] [Google Scholar]
  6. Christophersen B. O., Christiansen R. Z. Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria. Biochim Biophys Acta. 1975 Jun 23;388(3):402–412. doi: 10.1016/0005-2760(75)90099-5. [DOI] [PubMed] [Google Scholar]
  7. FRITZ I. B. Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297–304. doi: 10.1152/ajplegacy.1959.197.2.297. [DOI] [PubMed] [Google Scholar]
  8. Fritz I. B., Marquis N. R. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1226–1233. doi: 10.1073/pnas.54.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldberg L., Rydberg U. Inhibition of ethanol metabolism in vivo by administration of pyrazole. Biochem Pharmacol. 1969 Jul;18(7):1749–1762. doi: 10.1016/0006-2952(69)90164-6. [DOI] [PubMed] [Google Scholar]
  10. Gordon E. R. Mitochondrial functions in an ethanol-induced fatty liver. J Biol Chem. 1973 Dec 10;248(23):8271–8280. [PubMed] [Google Scholar]
  11. Higgins E. S., Friend W. H., Rogers K. S. Depression by ethionine of phosphorylating oxidation in hepatic mitochondria. Experientia. 1978 May 15;34(5):578–579. doi: 10.1007/BF01936969. [DOI] [PubMed] [Google Scholar]
  12. Higgins E. S., Friend W. H. Time course of the acute alcoholic fatty liver and concomitant mitochondrial function in fasted rats. Proc Soc Exp Biol Med. 1972 Dec;141(3):944–947. doi: 10.3181/00379727-141-36907. [DOI] [PubMed] [Google Scholar]
  13. Ho B. T., Estevez V., Fritchie G. E., Tansey L. W., Idänpän-Heikkilä J., McIsaac W. M. Metabolism of harmaline in rats. Biochem Pharmacol. 1971 Jun;20(6):1313–1319. doi: 10.1016/0006-2952(71)90363-7. [DOI] [PubMed] [Google Scholar]
  14. Holland P. C., Senior A. E., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation. Biochem J. 1973 Sep;136(1):173–184. doi: 10.1042/bj1360173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holland P. C., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria. Biochem J. 1973 Sep;136(1):157–171. doi: 10.1042/bj1360157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoppel C., DiMarco J. P., Tandler B. Riboflavin and rat hepatic cell structure and function. Mitochondrial oxidative metabolism in deficiency states. J Biol Chem. 1979 May 25;254(10):4164–4170. [PubMed] [Google Scholar]
  17. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  18. Lambe R. F., Williams D. C. The enzymic reduction of nicotinamide-adenine dinucleotide by 2-mercaptoethanol. Biochem J. 1965 Nov;97(2):475–478. doi: 10.1042/bj0970475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lerner E., Shug A. L., Elson C., Shrago E. Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals. J Biol Chem. 1972 Mar 10;247(5):1513–1519. [PubMed] [Google Scholar]
  20. Nordmann R., Nordmann J. Beta-mercaptoethanol induced fatty liver. Rev Eur Etud Clin Biol. 1971 Jun-Jul;16(6):564–566. [PubMed] [Google Scholar]
  21. Nordmann R., Nordmann J. Recherches sur la régulation du métabolisme glucidique in vivo. 3. Influence de l'inhibition de l'oxylation des acides gras. Biochimie. 1971;53(5):705–708. [PubMed] [Google Scholar]
  22. Osmundsen H., Bremer J. A spectrophotometric procedure for rapid and sensitive measurements of beta-oxidation. Demonstration of factors that can be rate-limiting for beta-oxidation. Biochem J. 1977 Jun 15;164(3):621–633. doi: 10.1042/bj1640621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Osmundsen H., Sherratt H. S. Inhibitors of beta-oxidation. Biochem Soc Trans. 1978;6(1):84–88. doi: 10.1042/bst0060084. [DOI] [PubMed] [Google Scholar]
  24. Rein K. A., Borrebaek B., Bremer J. Arsenite inhibits beta-oxidation in isolated rat liver mitochondria. Biochim Biophys Acta. 1979 Sep 28;574(3):487–494. doi: 10.1016/0005-2760(79)90245-5. [DOI] [PubMed] [Google Scholar]
  25. STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]
  26. Sabourault D., Bauché F., Giudicelli Y., Nordmann J., Nordmann R. Inhibitory effect of 2-mercaptoacetate on fatty acid oxidation in the liver. FEBS Lett. 1979 Dec 15;108(2):465–468. doi: 10.1016/0014-5793(79)80589-x. [DOI] [PubMed] [Google Scholar]
  27. Sabourault D., Giudicelli Y., Nordmann J., Nordmann R. Role and mechanism of peripheral fatty acid mobilization in 2-mercaptoethanol-induced fatty liver. Lipids. 1977 Aug;12(8):641–644. doi: 10.1007/BF02533758. [DOI] [PubMed] [Google Scholar]
  28. Sabourault D., Giudicelli Y., Nordmann R., Nordmann J. Is fatty liver induction a general feature of the administration of foreign sulfhydryl compounds? Biochim Biophys Acta. 1976 May 27;431(2):241–248. doi: 10.1016/0005-2760(76)90144-2. [DOI] [PubMed] [Google Scholar]
  29. Stanley H., Sherratt A., Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharmacol. 1976 Apr 1;25(7):743–750. doi: 10.1016/0006-2952(76)90139-8. [DOI] [PubMed] [Google Scholar]
  30. Vahlkamp T., Meijer A. J., Wilms J., Chamuleau R. A. Inhibition of mitochondrial electron transfer in rats by ethanethiol and methanethiol. Clin Sci (Lond) 1979 Feb;56(2):147–156. doi: 10.1042/cs0560147. [DOI] [PubMed] [Google Scholar]
  31. Wilms J., Lub J., Wever R. Reactions of mercaptans with cytochrome c oxidase and cytochrome c. Biochim Biophys Acta. 1980 Feb 8;589(2):324–335. doi: 10.1016/0005-2728(80)90048-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES