Abstract
To elucidate the mechanisms through which 2-mercaptoacetate administration inhibits fatty acid oxidation in the liver, the respiration rates induced by different substrates were studied polarographically in rat hepatic mitochondria isolated 3 h after 2-mercaptoacetate administration. Palmitoyl-L-carnitine oxidation was almost completely inhibited in either the absence or presence of malonate. Octanoate oxidation was also inhibited, and the intramitochondrial acyl-CoA content was markedly increased. The oxidation rate of pyruvate and 2-oxoglutarate on the one hand and of 3-hydroxybutyrate, succinate and glutamate on the other was either normal or only slightly decreased. In the presence of 2,4-dinitrophenol, the extent of the inhibition of palmitoyl-L-carnitine oxidation was unchanged. All these results are consistent with the hypothesis that the 2-mercaptoacetate inhibition of fatty acid oxidation is due to an inhibition of the beta-oxidation pathway itself. Finally, the mitochondrial defect responsible for this inhibition was shown to be an inhibition of palmitoyl-CoA dehydrogenase activity (EC 1.3.99.3).
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batenburg J. J., van den Bergh S. G. The mechanism of inhibition by fluoride of fatty acid oxidation in uncoupled mitochondria. Biochim Biophys Acta. 1973 Aug 23;316(2):136–142. doi: 10.1016/0005-2760(73)90003-9. [DOI] [PubMed] [Google Scholar]
- Beattie D. S. Enzyme localization in the inner and outer membranes of rat liver mitochondria. Biochem Biophys Res Commun. 1968 Jun 28;31(6):901–907. doi: 10.1016/0006-291x(68)90537-8. [DOI] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
- Cederbaum A. I., Rubin E. Protective effect of cysteine on the inhibition of mitochondrial functions by acetaldehyde. Biochem Pharmacol. 1976 Apr 15;25(8):963–973. doi: 10.1016/0006-2952(76)90323-3. [DOI] [PubMed] [Google Scholar]
- Christophersen B. O., Bremer J. Erucic acid--an inhibitor of fatty acid oxidation in the heart. Biochim Biophys Acta. 1972 Dec 8;280(4):506–514. doi: 10.1016/0005-2760(72)90130-0. [DOI] [PubMed] [Google Scholar]
- Christophersen B. O., Christiansen R. Z. Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria. Biochim Biophys Acta. 1975 Jun 23;388(3):402–412. doi: 10.1016/0005-2760(75)90099-5. [DOI] [PubMed] [Google Scholar]
- FRITZ I. B. Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297–304. doi: 10.1152/ajplegacy.1959.197.2.297. [DOI] [PubMed] [Google Scholar]
- Fritz I. B., Marquis N. R. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1226–1233. doi: 10.1073/pnas.54.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg L., Rydberg U. Inhibition of ethanol metabolism in vivo by administration of pyrazole. Biochem Pharmacol. 1969 Jul;18(7):1749–1762. doi: 10.1016/0006-2952(69)90164-6. [DOI] [PubMed] [Google Scholar]
- Gordon E. R. Mitochondrial functions in an ethanol-induced fatty liver. J Biol Chem. 1973 Dec 10;248(23):8271–8280. [PubMed] [Google Scholar]
- Higgins E. S., Friend W. H., Rogers K. S. Depression by ethionine of phosphorylating oxidation in hepatic mitochondria. Experientia. 1978 May 15;34(5):578–579. doi: 10.1007/BF01936969. [DOI] [PubMed] [Google Scholar]
- Higgins E. S., Friend W. H. Time course of the acute alcoholic fatty liver and concomitant mitochondrial function in fasted rats. Proc Soc Exp Biol Med. 1972 Dec;141(3):944–947. doi: 10.3181/00379727-141-36907. [DOI] [PubMed] [Google Scholar]
- Ho B. T., Estevez V., Fritchie G. E., Tansey L. W., Idänpän-Heikkilä J., McIsaac W. M. Metabolism of harmaline in rats. Biochem Pharmacol. 1971 Jun;20(6):1313–1319. doi: 10.1016/0006-2952(71)90363-7. [DOI] [PubMed] [Google Scholar]
- Holland P. C., Senior A. E., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation. Biochem J. 1973 Sep;136(1):173–184. doi: 10.1042/bj1360173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland P. C., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria. Biochem J. 1973 Sep;136(1):157–171. doi: 10.1042/bj1360157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppel C., DiMarco J. P., Tandler B. Riboflavin and rat hepatic cell structure and function. Mitochondrial oxidative metabolism in deficiency states. J Biol Chem. 1979 May 25;254(10):4164–4170. [PubMed] [Google Scholar]
- LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
- Lambe R. F., Williams D. C. The enzymic reduction of nicotinamide-adenine dinucleotide by 2-mercaptoethanol. Biochem J. 1965 Nov;97(2):475–478. doi: 10.1042/bj0970475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerner E., Shug A. L., Elson C., Shrago E. Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals. J Biol Chem. 1972 Mar 10;247(5):1513–1519. [PubMed] [Google Scholar]
- Nordmann R., Nordmann J. Beta-mercaptoethanol induced fatty liver. Rev Eur Etud Clin Biol. 1971 Jun-Jul;16(6):564–566. [PubMed] [Google Scholar]
- Nordmann R., Nordmann J. Recherches sur la régulation du métabolisme glucidique in vivo. 3. Influence de l'inhibition de l'oxylation des acides gras. Biochimie. 1971;53(5):705–708. [PubMed] [Google Scholar]
- Osmundsen H., Bremer J. A spectrophotometric procedure for rapid and sensitive measurements of beta-oxidation. Demonstration of factors that can be rate-limiting for beta-oxidation. Biochem J. 1977 Jun 15;164(3):621–633. doi: 10.1042/bj1640621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Sherratt H. S. Inhibitors of beta-oxidation. Biochem Soc Trans. 1978;6(1):84–88. doi: 10.1042/bst0060084. [DOI] [PubMed] [Google Scholar]
- Rein K. A., Borrebaek B., Bremer J. Arsenite inhibits beta-oxidation in isolated rat liver mitochondria. Biochim Biophys Acta. 1979 Sep 28;574(3):487–494. doi: 10.1016/0005-2760(79)90245-5. [DOI] [PubMed] [Google Scholar]
- STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]
- Sabourault D., Bauché F., Giudicelli Y., Nordmann J., Nordmann R. Inhibitory effect of 2-mercaptoacetate on fatty acid oxidation in the liver. FEBS Lett. 1979 Dec 15;108(2):465–468. doi: 10.1016/0014-5793(79)80589-x. [DOI] [PubMed] [Google Scholar]
- Sabourault D., Giudicelli Y., Nordmann J., Nordmann R. Role and mechanism of peripheral fatty acid mobilization in 2-mercaptoethanol-induced fatty liver. Lipids. 1977 Aug;12(8):641–644. doi: 10.1007/BF02533758. [DOI] [PubMed] [Google Scholar]
- Sabourault D., Giudicelli Y., Nordmann R., Nordmann J. Is fatty liver induction a general feature of the administration of foreign sulfhydryl compounds? Biochim Biophys Acta. 1976 May 27;431(2):241–248. doi: 10.1016/0005-2760(76)90144-2. [DOI] [PubMed] [Google Scholar]
- Stanley H., Sherratt A., Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharmacol. 1976 Apr 1;25(7):743–750. doi: 10.1016/0006-2952(76)90139-8. [DOI] [PubMed] [Google Scholar]
- Vahlkamp T., Meijer A. J., Wilms J., Chamuleau R. A. Inhibition of mitochondrial electron transfer in rats by ethanethiol and methanethiol. Clin Sci (Lond) 1979 Feb;56(2):147–156. doi: 10.1042/cs0560147. [DOI] [PubMed] [Google Scholar]
- Wilms J., Lub J., Wever R. Reactions of mercaptans with cytochrome c oxidase and cytochrome c. Biochim Biophys Acta. 1980 Feb 8;589(2):324–335. doi: 10.1016/0005-2728(80)90048-1. [DOI] [PubMed] [Google Scholar]