Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Sep 1;197(3):611–618. doi: 10.1042/bj1970611

Subcellular distribution of hepatic bile acid-conjugating enzymes.

W C Lim, T W Jordan
PMCID: PMC1163172  PMID: 6173037

Abstract

1. The subcellular location of enzymes conjugating bile acids with glycine or taurine was investigated by centrifugation of rat liver homogenates. 2. [14C]Cholic acid-conjugating activity was predominantly associated with the soluble-microsomal region of the gradient after centrifugation in a Ti-15 zonal rotor but the bulk of the conjugating activity sedimented with mitochondrial-lysosomal fractions in differential pelleting experiments. 3. Cholate: CoA ligase (EC 6.2.1.7) and cholyltransferase (EC 2.3.1) were not enriched in purified Golgi or plasma-membrane fractions. Cholate: CoA ligase was distributed evenly between rough- and smooth-surfaced microsomal subfractions but cholyltransferase showed a dual soluble-rough microsomal activity distribution. 4. Sedimentation of cholyltransferase in mitochondria-enriched fractions prepared by differential centrifugation appears to be an artefact of sedimentation of rough microsomal membranes in mitochondrial fractions. 5. The subcellular distribution of bile acid-conjugating enzymes is discussed with reference to hepatic processing of bile acids.

Full text

PDF
611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman M. R., Blobel G., Sabatini D. D. Nondestructive separation of rat liver rough microsomes into ribosomal and membranous components. Methods Enzymol. 1974;31:201–215. doi: 10.1016/0076-6879(74)31022-1. [DOI] [PubMed] [Google Scholar]
  2. CERIOTTI G. Determination of nucleic acids in animal tissues. J Biol Chem. 1955 May;214(1):59–70. [PubMed] [Google Scholar]
  3. Clark A. G., Darby F. J., Smith J. N. Species differences in the inhibition of glutathione S-aryltransferase by phthaleins and dicarboxylic acids. Biochem J. 1967 Apr;103(1):49–54. doi: 10.1042/bj1030049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dallner G., Ernster L. Subfractionation and composition of microsomal membranes: a review. J Histochem Cytochem. 1968 Oct;16(10):611–632. doi: 10.1177/16.10.611. [DOI] [PubMed] [Google Scholar]
  5. ELLIOTT W. H. The enzymic activation of cholic acid by guinea-pig-liver microsomes. Biochem J. 1956 Mar;62(3):427–433. doi: 10.1042/bj0620427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleischer S., Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6–41. doi: 10.1016/0076-6879(74)31005-1. [DOI] [PubMed] [Google Scholar]
  7. Killenberg P. G. Measurement and subcellular distribution of choloyl-CoA synthetase and bile acid-CoA:amino acid N-acyltransferase activities in rat liver. J Lipid Res. 1978 Jan;19(1):24–31. [PubMed] [Google Scholar]
  8. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  9. Pickett C. B., Montisano D., Eisner D., Cascarano J. The physical association between rat liver mitochondria and rough endoplasmic reticulum. I. Isolation, electron microscopic examination and sedimentation equilibrium centrifugation analyses of rough endoplasmic reticulum-mitochondrial complexes. Exp Cell Res. 1980 Aug;128(2):343–352. doi: 10.1016/0014-4827(80)90070-1. [DOI] [PubMed] [Google Scholar]
  10. Polokoff M. A., Coleman R. A., Bell R. M. Evidence that cholic acid CoA ligase is located asymmetrically on the cytoplasmic surface of hepatic microsomal vesicles. J Lipid Res. 1979 Jan;20(1):17–21. [PubMed] [Google Scholar]
  11. ROTHSCHILD J. The isolation of microsomal membranes. Biochem Soc Symp. 1963;22:4–31. [PubMed] [Google Scholar]
  12. Renston R. H., Maloney D. G., Jones A. L., Hradek G. T., Wong K. Y., Goldfine I. D. Bile secretory apparatus: evidence for a vesicular transport mechanism for proteins in the rat, using horseradish peroxidase and [125I]insulin. Gastroenterology. 1980 Jun;78(6):1373–1388. [PubMed] [Google Scholar]
  13. Scherstén T. The synthesis of cholic acid conjugates in human liver. An analysis of factors controlling the subcellular synthesis of bile acid conjugates in normal and cholestatic conditions. Acta Chir Scand Suppl. 1967;373:1–38. [PubMed] [Google Scholar]
  14. Shah P. P., Staple E. Synthesis of coenzyme A esters of some bile acids. Steroids. 1968 Nov;12(5):571–576. doi: 10.1016/s0039-128x(68)80034-0. [DOI] [PubMed] [Google Scholar]
  15. Song C. S., Rubin W., Rifkind A. B., Kappas A. Plasma membranes of the rat liver. Isolation and enzymatic characterization of a fraction rich in bile canaliculi. J Cell Biol. 1969 Apr;41(1):124–132. doi: 10.1083/jcb.41.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vessey D. A., Crissey M. H., Zakim D. Kinetic studies on the enzymes conjugating bile acids with taurine and glycine in bovine liver. Biochem J. 1977 Apr 1;163(1):181–183. doi: 10.1042/bj1630181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vessey D. A. The co-purification and common identity of cholyl CoA:glycine- and cholyl CoA:taurine-N-acyltransferase activities from bovine liver. J Biol Chem. 1979 Mar 25;254(6):2059–2063. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES