Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jul 15;198(1):1–8. doi: 10.1042/bj1980001

The red cell membrane and its cytoskeleton.

W B Gratzer
PMCID: PMC1163203  PMID: 7034726

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams K. H. A theory for the shape of the red blood cell. Biophys J. 1973 Oct;13(10):1049–1053. doi: 10.1016/S0006-3495(73)86044-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan D., Michell R. H. A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim Biophys Acta. 1978 Apr 4;508(2):277–286. doi: 10.1016/0005-2736(78)90330-9. [DOI] [PubMed] [Google Scholar]
  3. Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1259–1265. [PubMed] [Google Scholar]
  4. Bennett V. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature. 1979 Oct 18;281(5732):597–599. doi: 10.1038/281597a0. [DOI] [PubMed] [Google Scholar]
  5. Bennett V. Purification of an active proteolytic fragment of the membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1978 Apr 10;253(7):2292–2299. [PubMed] [Google Scholar]
  6. Bennett V., Stenbuck P. J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979 Apr 10;254(7):2533–2541. [PubMed] [Google Scholar]
  7. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Borejdo J., Muhlrad A., Leibovich S. J., Oplatka A. Polymerization of G-actin by hydrodynamic shear stresses. Biochim Biophys Acta. 1981 Jan 30;667(1):118–131. doi: 10.1016/0005-2795(81)90072-6. [DOI] [PubMed] [Google Scholar]
  9. Brailsford J. D., Korpman R. A., Bull B. S. Crenation and cupping of the red cell: a new theoretical approach. Part I. Crenation. J Theor Biol. 1980 Oct 7;86(3):513–529. doi: 10.1016/0022-5193(80)90350-1. [DOI] [PubMed] [Google Scholar]
  10. Brenner S. L., Korn E. D. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem. 1979 Sep 10;254(17):8620–8627. [PubMed] [Google Scholar]
  11. Brenner S. L., Korn E. D. Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation. Evidence for oligomeric actin in the erythrocyte cytoskeleton. J Biol Chem. 1980 Feb 25;255(4):1670–1676. [PubMed] [Google Scholar]
  12. Calvert R., Bennett P., Gratzer W. Properties and structural role of the subunits of human spectrin. Eur J Biochem. 1980 Jun;107(2):355–361. doi: 10.1111/j.1432-1033.1980.tb06036.x. [DOI] [PubMed] [Google Scholar]
  13. Canham P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol. 1970 Jan;26(1):61–81. doi: 10.1016/s0022-5193(70)80032-7. [DOI] [PubMed] [Google Scholar]
  14. Cherry R. J., Bürkli A., Busslinger M., Schneider G., Parish G. R. Rotational diffusion of band 3 proteins in the human erythrocyte membrane. Nature. 1976 Sep 30;263(5576):389–393. doi: 10.1038/263389a0. [DOI] [PubMed] [Google Scholar]
  15. Cohen C. M., Branton D. The role of spectrin in erythrocyte membrane-stimulated actin polymerisation. Nature. 1979 May 10;279(5709):163–165. doi: 10.1038/279163a0. [DOI] [PubMed] [Google Scholar]
  16. Cohen C. M., Korsgren C. Band 4.1 causes spectrin-actin gels to become thixiotropic. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1429–1435. doi: 10.1016/s0006-291x(80)80025-8. [DOI] [PubMed] [Google Scholar]
  17. Deuticke B. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta. 1968 Dec 10;163(4):494–500. doi: 10.1016/0005-2736(68)90078-3. [DOI] [PubMed] [Google Scholar]
  18. Eitan A., Aloni B., Livne A. Unique properties of the camel erythrocyte membrane, II. Organization of membrane proteins. Biochim Biophys Acta. 1976 Apr 5;426(4):647–658. doi: 10.1016/0005-2736(76)90129-2. [DOI] [PubMed] [Google Scholar]
  19. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  20. Fowler V., Branton D. Lateral mobility of human erythrocyte integral membrane proteins. Nature. 1977 Jul 7;268(5615):23–26. doi: 10.1038/268023a0. [DOI] [PubMed] [Google Scholar]
  21. Fowler V., Taylor D. L. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980 May;85(2):361–376. doi: 10.1083/jcb.85.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Furthmayr H. Glycophorins A, B, and C: a family of sialoglycoproteins. Isolation and preliminary characterization of trypsin derived peptides. J Supramol Struct. 1978;9(1):79–95. doi: 10.1002/jss.400090109. [DOI] [PubMed] [Google Scholar]
  23. Gerritsen W. J., Verkleij A. J., Van Deenen L. L. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles. Biochim Biophys Acta. 1979 Jul 19;555(1):26–41. doi: 10.1016/0005-2736(79)90069-5. [DOI] [PubMed] [Google Scholar]
  24. Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
  25. Hardy B., Bensch K. G., Schrier S. L. Spectrin rearrangement early in erythrocyte ghost endocytosis. J Cell Biol. 1979 Sep;82(3):654–663. doi: 10.1083/jcb.82.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hargreaves W. R., Giedd K. N., Verkleij A., Branton D. Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles. J Biol Chem. 1980 Dec 25;255(24):11965–11972. [PubMed] [Google Scholar]
  27. Harris H. W., Jr, Lux S. E. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J Biol Chem. 1980 Dec 10;255(23):11512–11520. [PubMed] [Google Scholar]
  28. Hayashi H., Plishker G. A., Vaughan L., Penniston J. T. Energy-dependent endocytosis in erythrocyte ghosts. IV. Effects of Ca2+, Na+ +K+, and 5'-adenylylimidodiphosphate. Biochim Biophys Acta. 1975 Mar 13;382(2):218–229. doi: 10.1016/0005-2736(75)90180-7. [DOI] [PubMed] [Google Scholar]
  29. Herzberg V., Boughter J. M., Carlisle S., Hill D. E. Evidence for two insulin receptor populations on human erythrocytes. Nature. 1980 Jul 17;286(5770):279–281. doi: 10.1038/286279a0. [DOI] [PubMed] [Google Scholar]
  30. Hiller G., Weber K. Spectrin is absent in various tissue culture cells. Nature. 1977 Mar 10;266(5598):181–183. doi: 10.1038/266181a0. [DOI] [PubMed] [Google Scholar]
  31. Huestis W. H., McConnell H. M. A functional acetylcholine receptor in the human erythrocyte. Biochem Biophys Res Commun. 1974 Apr 8;57(3):726–732. doi: 10.1016/0006-291x(74)90606-8. [DOI] [PubMed] [Google Scholar]
  32. Hui D. Y., Harmony J. A. Erythrocyte spectrin alteration induced by low-density lipoprotein. J Supramol Struct. 1979;10(2):253–263. doi: 10.1002/jss.400100214. [DOI] [PubMed] [Google Scholar]
  33. Ji T. H., Nicolson G. L. Lectin binding and perturbation of the outer surface of the cell membrane induces a transmembrane organizational alteration at the inner surface. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2212–2216. doi: 10.1073/pnas.71.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kury P. G., McConnell M. Regulation of Membrane Flexibility in Human Erythrocytes. Biochemistry. 1975 Jul;14(13):2798–2803. doi: 10.1021/bi00684a002. [DOI] [PubMed] [Google Scholar]
  35. Lange Y., Cutler H. B., Steck T. L. The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane. J Biol Chem. 1980 Oct 10;255(19):9331–9337. [PubMed] [Google Scholar]
  36. Lin D. C., Lin S. Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 May;76(5):2345–2349. doi: 10.1073/pnas.76.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Liu S. C., Palek J. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons. Nature. 1980 Jun 19;285(5766):586–588. doi: 10.1038/285586a0. [DOI] [PubMed] [Google Scholar]
  38. Loyter A., Ben-Zaquen R., Marash R., Milner Y. Dephosphorylation of human erythrocyte membranes induced by sendai virus. Biochemistry. 1977 Aug 23;16(17):3903–3909. doi: 10.1021/bi00636a028. [DOI] [PubMed] [Google Scholar]
  39. Lux S. E., John K. M., Ukena T. E. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability. J Clin Invest. 1978 Mar;61(3):815–827. doi: 10.1172/JCI108996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lux S. E., Pease B., Tomaselli M. B., John K. M., Bernstein S. E. Hemolytic anemias associated with deficient or dysfunctional spectrin. Prog Clin Biol Res. 1979;30:463–469. [PubMed] [Google Scholar]
  41. Maruyama K. Effects of trace amounts of Ca2+ and Mg2+ on the polymerization of actin. Biochim Biophys Acta. 1981 Jan 30;667(1):139–142. doi: 10.1016/0005-2795(81)90074-x. [DOI] [PubMed] [Google Scholar]
  42. Morrow J. S., Marchesi V. T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol. 1981 Feb;88(2):463–468. doi: 10.1083/jcb.88.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. NAKAO M., NAKAO T., YAMAZOE S. Adenosine triphosphate and maintenance of shape of the human red cells. Nature. 1960 Sep 10;187:945–946. doi: 10.1038/187945a0. [DOI] [PubMed] [Google Scholar]
  44. Nelson M. J., Ferrell J. E., Jr, Huestis W. H. Adrenergic stimulation of membrane protein phosphorylation in human erythrocytes. Biochim Biophys Acta. 1979 Nov 16;558(1):136–140. doi: 10.1016/0005-2736(79)90323-7. [DOI] [PubMed] [Google Scholar]
  45. Nelson M. J., Huestis W. H. Evidence that calcium acts as an intracellular messenger for adrenergic responses in human erythrocytes. Biochim Biophys Acta. 1980 Aug 4;600(2):398–405. doi: 10.1016/0005-2736(80)90443-5. [DOI] [PubMed] [Google Scholar]
  46. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Patel V. P., Fairbanks G. Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol. 1981 Feb;88(2):430–440. doi: 10.1083/jcb.88.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  49. Pinder J. C., Phethean J., Gratzer W. B. Spectrin in primitive erythrocytes. FEBS Lett. 1978 Aug 15;92(2):278–282. doi: 10.1016/0014-5793(78)80770-4. [DOI] [PubMed] [Google Scholar]
  50. Rasmussen H., Lake W., Allen J. E. The effect of catecholamines and prostaglandins upon human and rat erythrocytes. Biochim Biophys Acta. 1975 Nov 10;411(1):63–73. doi: 10.1016/0304-4165(75)90285-8. [DOI] [PubMed] [Google Scholar]
  51. Rubin M. S., Swislocki N. I., Sonenberg M. Alteration of liver plasma membrane protein conformation by bovine growth hormone in vitro. Arch Biochem Biophys. 1973 Jul;157(1):252–259. doi: 10.1016/0003-9861(73)90411-6. [DOI] [PubMed] [Google Scholar]
  52. Schindler M., Koppel D. E., Sheetz M. P. Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1457–1461. doi: 10.1073/pnas.77.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sekiguchi K., Asano A. Participation of spectrin in Sendai virus-induced fusion of human erythrocyte ghosts. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1740–1744. doi: 10.1073/pnas.75.4.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sheetz M. P., Casaly J. 2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons. J Biol Chem. 1980 Oct 25;255(20):9955–9960. [PubMed] [Google Scholar]
  55. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shohet S. B. Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes. J Clin Invest. 1979 Aug;64(2):483–494. doi: 10.1172/JCI109486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Shotton D. M., Burke B. E., Branton D. The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. J Mol Biol. 1979 Jun 25;131(2):303–329. doi: 10.1016/0022-2836(79)90078-0. [DOI] [PubMed] [Google Scholar]
  58. Siefring G. E., Jr, Apostol A. B., Velasco P. T., Lorand L. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes. Biochemistry. 1978 Jun 27;17(13):2598–2604. doi: 10.1021/bi00606a022. [DOI] [PubMed] [Google Scholar]
  59. Steck T. L. The band 3 protein of the human red cell membrane: a review. J Supramol Struct. 1978;8(3):311–324. doi: 10.1002/jss.400080309. [DOI] [PubMed] [Google Scholar]
  60. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tokuyasu K. T., Schekman R., Singer S. J. Domains of receptor mobility and endocytosis in the membranes of neonatal human erythrocytes and reticulocytes are deficient in spectrin. J Cell Biol. 1979 Feb;80(2):481–486. doi: 10.1083/jcb.80.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tyler J. M., Anderson J. M., Branton D. Structural comparison of several actin-binding macromolecules. J Cell Biol. 1980 May;85(2):489–495. doi: 10.1083/jcb.85.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tyler J. M., Hargreaves W. R., Branton D. Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5192–5196. doi: 10.1073/pnas.76.10.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ungewickell E., Bennett P. M., Calvert R., Ohanian V., Gratzer W. B. In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte. Nature. 1979 Aug 30;280(5725):811–814. doi: 10.1038/280811a0. [DOI] [PubMed] [Google Scholar]
  65. Ungewickell E., Gratzer W. Self-association of human spectrin. A thermodynamic and kinetic study. Eur J Biochem. 1978 Aug 1;88(2):379–385. doi: 10.1111/j.1432-1033.1978.tb12459.x. [DOI] [PubMed] [Google Scholar]
  66. Vos J., Ahkong Q. F., Botham G. M., Quirk S. J., Lucy J. A. Changes in the distribution of intramembranous particles in hen erythrocytes during cell fusion induced by the bivalent-cation ionophore A23187. Biochem J. 1976 Sep 15;158(3):651–653. doi: 10.1042/bj1580651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zwaal R. F., Roelofsen B., Colley C. M. Localization of red cell membrane constituents. Biochim Biophys Acta. 1973 Sep 10;300(2):159–182. doi: 10.1016/0304-4157(73)90003-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES