Skip to main content
Journal of the American Medical Informatics Association : JAMIA logoLink to Journal of the American Medical Informatics Association : JAMIA
. 1996 Nov-Dec;3(6):389–398. doi: 10.1136/jamia.1996.97084512

ModelDB: an environment for running and storing computational models and their results applied to neuroscience.

B E Peterson 1, M D Healy 1, P M Nadkarni 1, P L Miller 1, G M Shepherd 1
PMCID: PMC116323  PMID: 8930855

Abstract

Research groups within the Human Brain Project are developing technologies to help organize and make accessible the vast quantities of information being accumulated in the neurosciences. The goal of this work is to provide systems that enable this complex information from many diverse sources to be synthesized into a coherent theory of nervous system function. Our initial approach to this problem has been to create several small databases. While addressing the issues of each individual database, we are also considering how each might be incorporated into an integrated cluster of databases. In this paper, we describe a pilot project in which we construct a database of computational models of neuronal function. This database allows models to be created and run and their results reviewed through a World Wide Web interface. Because models encapsulate knowledge in a formal manner about how neuronal systems function, we also discuss how this database forms a natural center for our initial attempts at creating a cluster of related databases. General issues of database development in the context of the Web are also discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom F. E., Young W. G. New solutions for neuroscience communications are still needed. Prog Brain Res. 1994;100:275–281. doi: 10.1016/s0079-6123(08)60795-5. [DOI] [PubMed] [Google Scholar]
  2. Carnevale N. T., Woolf T. B., Shepherd G. M. Neuron simulations with SABER. J Neurosci Methods. 1990 Aug;33(2-3):135–148. doi: 10.1016/0165-0270(90)90017-a. [DOI] [PubMed] [Google Scholar]
  3. Hines M. A program for simulation of nerve equations with branching geometries. Int J Biomed Comput. 1989 Mar;24(1):55–68. doi: 10.1016/0020-7101(89)90007-x. [DOI] [PubMed] [Google Scholar]
  4. Huerta M. F., Koslow S. H., Leshner A. I. The Human Brain Project: an international resource. Trends Neurosci. 1993 Nov;16(11):436–438. doi: 10.1016/0166-2236(93)90069-x. [DOI] [PubMed] [Google Scholar]
  5. Lowe H. J., Lomax E. C., Polonkey S. E. The World Wide Web: a review of an emerging internet-based technology for the distribution of biomedical information. J Am Med Inform Assoc. 1996 Jan-Feb;3(1):1–14. doi: 10.1136/jamia.1996.96342645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pellionisz A., Llinás R., Perkel D. H. A computer model of the cerebellar cortex of the frog. Neuroscience. 1977;2(1):19–35. doi: 10.1016/0306-4522(77)90065-3. [DOI] [PubMed] [Google Scholar]
  7. Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol. 1967 Sep;30(5):1138–1168. doi: 10.1152/jn.1967.30.5.1138. [DOI] [PubMed] [Google Scholar]
  8. Rall W., Shepherd G. M. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol. 1968 Nov;31(6):884–915. doi: 10.1152/jn.1968.31.6.884. [DOI] [PubMed] [Google Scholar]
  9. Shepherd G. M., Brayton R. K. Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb. Brain Res. 1979 Oct 19;175(2):377–382. doi: 10.1016/0006-8993(79)91020-5. [DOI] [PubMed] [Google Scholar]
  10. Shepherd G. M., Brayton R. K. Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 1987 Apr;21(1):151–165. doi: 10.1016/0306-4522(87)90329-0. [DOI] [PubMed] [Google Scholar]
  11. Shepherd G. M., Brayton R. K., Miller J. P., Segev I., Rinzel J., Rall W. Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2192–2195. doi: 10.1073/pnas.82.7.2192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Singer W., Gray C. M. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–586. doi: 10.1146/annurev.ne.18.030195.003011. [DOI] [PubMed] [Google Scholar]
  13. Traub R. D. Motorneurons of different geometry and the size principle. Biol Cybern. 1977 Feb 7;25(3):163–176. doi: 10.1007/BF00365213. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the American Medical Informatics Association are provided here courtesy of Oxford University Press

RESOURCES