Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jul 15;198(1):231–234. doi: 10.1042/bj1980231

Mitochondrial-membrane polar-head-group composition is influenced by diet fat.

S M Innis, M T Clandinin
PMCID: PMC1163233  PMID: 7325999

Abstract

Male Sprague-Dawley rats were fed diets containing 20% (w/w) soya-bean oil, high-erucic acid rapeseed oil or low-erucic acid rapeseed oil for 0, 12 or 23 days. The type of fat present in the diet had no effect on the total phospholipid content of heart mitochondria (micrograms/mg of protein) but did influence the phospholipid class distribution. Rats fed high-erucic acid rapeseed oil for 12 or 23 days had significantly higher mitochondrial phosphatidylcholine content than rats fed soya-bean oil. Low-erucic acid rapeseed oil resulted in elevation of cardiac mitochondrial cardiolipin content after dietary treatment for 12 days. The results demonstrate in vivo that diet is a significant determinant of the phospholipid class content of subcellular membranes.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beare-Rogers J. L. Docosenoic acids in dietary fats. Prog Chem Fats Other Lipids. 1977;15(1):29–56. doi: 10.1016/0079-6832(77)90006-4. [DOI] [PubMed] [Google Scholar]
  2. Bjørnstad P., Bremer J. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J Lipid Res. 1966 Jan;7(1):38–45. [PubMed] [Google Scholar]
  3. Bloj B., Morero R. D., Farías R. N., Trucco R. E. Membrane lipid fatty acids and regulation of membrane-bound enzymes. Allosteric behaviour of erythrocyte Mg 2+ -ATPase, (Na + +K + )-ATPase and acetylcholinesterase from rats fed different fat-supplemented diets. Biochim Biophys Acta. 1973 Jun 7;311(1):67–79. doi: 10.1016/0005-2736(73)90255-1. [DOI] [PubMed] [Google Scholar]
  4. Blomstrand R., Svensson L. Studies on phospholipids with particular reference to cardiolipin of rat heart after feeding rapeseed oil. Lipids. 1974 Oct;9(10):771–780. doi: 10.1007/BF02532144. [DOI] [PubMed] [Google Scholar]
  5. Chapman D., Gómez-Fernández J. C., Goñi F. M. Intrinsic protein--lipid interactions. Physical and biochemical evidence. FEBS Lett. 1979 Feb 15;98(2):211–223. doi: 10.1016/0014-5793(79)80186-6. [DOI] [PubMed] [Google Scholar]
  6. Clandinin M. T. The role of dietary long chain fatty acids in mitochondrial structure and function. Effects on rat cardiac mitochondrial respiration. J Nutr. 1978 Feb;108(2):273–281. doi: 10.1093/jn/108.2.273. [DOI] [PubMed] [Google Scholar]
  7. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Gómez-Puyou M. T., Gavilanes M., Gómez-Puyou A., Ernster L. Control of activity states of heart mitochondrial ATPase. Role of the proton-motive force and Ca2+. Biochim Biophys Acta. 1980 Oct 3;592(3):396–405. doi: 10.1016/0005-2728(80)90087-0. [DOI] [PubMed] [Google Scholar]
  9. Dewailly P., Sezille G., Nouvelot A., Fruchart J. C., Jaillard J. Changes in rat heart phospholipid composition after rapeseed oil feeding. Lipids. 1977 Mar;12(3):301–306. doi: 10.1007/BF02533352. [DOI] [PubMed] [Google Scholar]
  10. Fourcans B., Jain M. K. Role of phospholipids in transport and enzymic reactions. Adv Lipid Res. 1974;12(0):147–226. doi: 10.1016/b978-0-12-024912-1.50011-9. [DOI] [PubMed] [Google Scholar]
  11. Hammer C. T., Wills E. D. The effect of dietary fats on the composition of the liver endoplasmic reticulum and oxidative drug metabolsim. Br J Nutr. 1979 May;41(3):465–475. doi: 10.1079/bjn19790061. [DOI] [PubMed] [Google Scholar]
  12. Holub B. J., Kuksis A. Metabolism of molecular species of diacylglycerophospholipids. Adv Lipid Res. 1978;16:1–125. doi: 10.1016/b978-0-12-024916-9.50007-x. [DOI] [PubMed] [Google Scholar]
  13. Hsu C. M., Kummerow F. A. Influence of elaidate and erucate on heart mitochondria. Lipids. 1977 Jun;12(6):486–494. doi: 10.1007/BF02535447. [DOI] [PubMed] [Google Scholar]
  14. Hung S., Umemura T., Yamashiro S., Slinger S. J. The effects of original and randomized rapseed oils containing high or very low levels of erucic acid on cardiac lipids and myocardial lesions in rats. Lipids. 1977 Feb;12(2):215–221. doi: 10.1007/BF02533297. [DOI] [PubMed] [Google Scholar]
  15. Im W. B., Deutchler J. T., Spector A. A. Effects of membrane fatty acid composition on sodium-independent phenylalanine transport in Ehrlich cells. Lipids. 1979 Dec;14(12):1003–1008. doi: 10.1007/BF02533437. [DOI] [PubMed] [Google Scholar]
  16. Innis S. M., Clandinin M. T. Effect of strain, sex and duration of feeding on plasma fatty acids of rats fed various dietary oils. J Nutr. 1980 May;110(5):1006–1013. doi: 10.1093/jn/110.5.1006. [DOI] [PubMed] [Google Scholar]
  17. Innis S. M., Clandinin M. T. Separation of phospholipids on chromarods. J Chromatogr. 1981 Jan 30;205(2):490–492. doi: 10.1016/s0021-9673(00)82684-9. [DOI] [PubMed] [Google Scholar]
  18. Janki R. M., Aithal H. N., McMurray W. C., Tustanoff E. R. The effect of altered membrane-lipid composition on enzyme activities of outer and inner mitochondrial membranes of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1974 Feb 27;56(4):1078–1085. doi: 10.1016/s0006-291x(74)80298-6. [DOI] [PubMed] [Google Scholar]
  19. Kramer J. K., Hulan H. W., Trenholm H. L., Corner A. H. Growth, lipid metabolism and pathology of two strains of rats fed high fat diets. J Nutr. 1979 Feb;109(2):202–213. doi: 10.1093/jn/109.2.202. [DOI] [PubMed] [Google Scholar]
  20. Kramer J. K., Mahadevan S., Hunt J. R., Sauer F. D., Corner A. H., Charlton K. M. Growth rate, lipid composition, metabolism and myocardial lesions of rats fed rapeseed oils (Brassica campestris var. Arlo, Echo and Span, and B. napus var. Oro). J Nutr. 1973 Dec;103(12):1696–1708. doi: 10.1093/jn/103.12.1696. [DOI] [PubMed] [Google Scholar]
  21. Lee A. G. Lipid phase transitions and phase diagrams. I. Lipid phase transitions. Biochim Biophys Acta. 1977 Aug 9;472(2):237–281. doi: 10.1016/0304-4157(77)90018-1. [DOI] [PubMed] [Google Scholar]
  22. McMurchie E. J., Raison J. K. Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta. 1979 Jul 5;554(2):364–374. doi: 10.1016/0005-2736(79)90377-8. [DOI] [PubMed] [Google Scholar]
  23. McMurray W. C., Magee W. L. Phospholipid metabolism. Annu Rev Biochem. 1972;41(10):129–160. doi: 10.1146/annurev.bi.41.070172.001021. [DOI] [PubMed] [Google Scholar]
  24. Parsons D. F., Yano Y. The cholesterol content of the outer and inner membranes of guinea-pig liver mitochondria. Biochim Biophys Acta. 1967 May 2;135(2):362–364. doi: 10.1016/0005-2736(67)90132-0. [DOI] [PubMed] [Google Scholar]
  25. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  26. Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
  27. Tuena de Gómez-Puyou M., Gavilanes M., Delaisse J. M., Gómez-Puyou A. Conformational changes of soluble mitochondrial ATPase as controlled by hydrophobic interactions within the enzyme. Biochem Biophys Res Commun. 1978 Jun 14;82(3):1028–1033. doi: 10.1016/0006-291x(78)90886-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES