Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jul 15;198(1):243–246. doi: 10.1042/bj1980243

Glutathione utilization by lactating bovine mammary secretory tissue in vitro.

C R Baumrucker, P A Pocius, T L Riss
PMCID: PMC1163236  PMID: 6119982

Abstract

gamma-Glutamyltransferase (D-glutamyl transpeptidase, EC 2.3.2.2) activity has been shown to be located predominantly on the extracellular surface of the plasma membrane of lactating bovine mammary cells. Radioactive label from both oxidized ([14C]-gamma-glutamyl) and reduced ([35S]cysteinyl) glutathione was taken up and incorporated into acid-precipitable proteins of mammary tissue. Uptake was shown to involve the transport of free amino acids, and incorporation was shown to involve the action of gamma-=glutamyltransferase. These results indicate that lactating mammary tissue utilizes the constituent amino acids of glutathione for milk-protein synthesis.

Full text

PDF
243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumrucker C. R., Pocius P. A. gamma-Glutamyl transpeptidase in lactating mammary secretory tissue of cow and rat. J Dairy Sci. 1978 Mar;61(3):309–314. doi: 10.3168/jds.S0022-0302(78)83599-1. [DOI] [PubMed] [Google Scholar]
  2. Baumrucker C. R. gamma-Glutamyl transpeptidase of bovine milk membranes: distribution and characterization. J Dairy Sci. 1979 Feb;62(2):253–258. doi: 10.3168/jds.S0022-0302(79)83233-6. [DOI] [PubMed] [Google Scholar]
  3. Clark J. H., Spires H. R., Davis C. L. Uptake and metabolism of nitrogenous components by the lactacting mammary gland. Fed Proc. 1978 Apr;37(5):1233–1238. [PubMed] [Google Scholar]
  4. Curthoys N. P., Hughey R. P. Characterization and physiological function of rat renal gamma-glutamyltranspeptidase. Enzyme. 1979;24(6):383–403. doi: 10.1159/000458694. [DOI] [PubMed] [Google Scholar]
  5. Elce J. S., Broxmeyer B. Gamma-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J. 1976 Feb 1;153(2):223–232. doi: 10.1042/bj1530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fricke U. Tritosol: a new scintillation cocktail based on Triton X-100. Anal Biochem. 1975 Feb;63(2):555–558. doi: 10.1016/0003-2697(75)90379-6. [DOI] [PubMed] [Google Scholar]
  7. Griffith O. W., Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606–5610. doi: 10.1073/pnas.76.11.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffith O. W., Meister A. Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc Natl Acad Sci U S A. 1979 Jan;76(1):268–272. doi: 10.1073/pnas.76.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffith O. W., Novogrodsky A., Meister A. Translocation of glutathione from lymphoid cells that have markedly different gamma-glutamyl transpeptidase activities. Proc Natl Acad Sci U S A. 1979 May;76(5):2249–2252. doi: 10.1073/pnas.76.5.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahn R., Wendel A., Flohé L. The fate of extracellular glutathione in the rat. Biochim Biophys Acta. 1978 Mar 20;539(3):324–337. doi: 10.1016/0304-4165(78)90037-5. [DOI] [PubMed] [Google Scholar]
  11. Inoue M., Horiuchi S., Morino Y. gamma-Glutamyl transpeptidase in rat ascites tumor cell LY-5. Lack of functional correlation of its catalytic activity with the amino acid transport. Eur J Biochem. 1977 Sep;78(2):609–615. doi: 10.1111/j.1432-1033.1977.tb11774.x. [DOI] [PubMed] [Google Scholar]
  12. Katz J., Wals P. A., Van de Velde R. L. Lipogenesis by acini from mammary gland of lactating rats. J Biol Chem. 1974 Nov 25;249(22):7348–7357. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Marathe G. V., Nash B., Haschemeyer R. H., Tate S. S. Ultrastructural localization of gamma-glutamyl transpeptidase in rat kidney and jejunum. FEBS Lett. 1979 Nov 15;107(2):436–440. doi: 10.1016/0014-5793(79)80425-1. [DOI] [PubMed] [Google Scholar]
  15. Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
  16. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
  17. Narczewska B., Szewczuk A. Inhibition of -glutamyl transpeptidase by a mixture of L-serine and borate. Experiments with tissue homogenates and in vivo. Arch Immunol Ther Exp (Warsz) 1971;19(4):447–454. [PubMed] [Google Scholar]
  18. Park C. S., Smith J. J., Eigel W. N., Keenan T. W. Selected hormonal effects on protein secretion and amino acid uptake by acini from bovine mammary gland. Int J Biochem. 1979;10(11):889–894. doi: 10.1016/0020-711x(79)90119-8. [DOI] [PubMed] [Google Scholar]
  19. Park C. S., Smith J. J., Sasaki M., Eigel W. N., Keenan T. W. Isolation of functionally active acini from bovine mammary gland. J Dairy Sci. 1979 Apr;62(4):537–545. doi: 10.3168/jds.S0022-0302(79)83287-7. [DOI] [PubMed] [Google Scholar]
  20. Pocius P. A., Baumrucker C. R. Amino acid uptake by bovine mammary slices. J Dairy Sci. 1980 May;63(5):746–749. doi: 10.3168/jds.S0022-0302(80)83002-5. [DOI] [PubMed] [Google Scholar]
  21. Pocius P. A., Baumrucker C. R., McNamara J. P., Bauman D. E. gamma-Glutamyl transpeptidase in rat mammary tissue. Activity during lactogenesis and regulation by prolactin. Biochem J. 1980 May 15;188(2):565–568. doi: 10.1042/bj1880565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Puente J., Varas M. A., Beckhaus G., Sapag-Hagar M. Gamma-glutamyltranspeptidase activity and cyclic AMP levels in rat liver and mammary gland during the lactogenic cycle and in the oestradiol-progesterone pseudo-induced pregnancy. FEBS Lett. 1979 Mar 1;99(1):215–218. doi: 10.1016/0014-5793(79)80282-3. [DOI] [PubMed] [Google Scholar]
  23. Sekura R., Meister A. Glutathione turnover in the kidney; considerations relating to the gamma-glutamyl cycle and the transport of amino acids. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2969–2972. doi: 10.1073/pnas.71.8.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith J. E. Relationship of in vivo erythrocyte glutathione flux to the oxidized glutathione transport system. J Lab Clin Med. 1974 Mar;83(3):444–450. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES