Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Aug 15;198(2):273–280. doi: 10.1042/bj1980273

Oxygen metabolism of mammalian spermatozoa. Generation of hydrogen peroxide by rabbit epididymal spermatozoa

Michael K Holland 1, Bayard T Storey 1,*
PMCID: PMC1163245  PMID: 7326006

Abstract

Rabbit spermatozoa from the cauda epididymis produced 0.7–0.8nmol of H2O2/min per 108 cells at cell concentrations below 107 cells/ml with linear dependence on cell concentration. Above 2 × 107 cells/ml, the rate again became linear with cell concentration but decreased to 0.1–0.2nmol/min per 108 cells. Spermatozoa treated with amphotericin B, which makes the plasma membrane highly permeable to low-molecular-weight compounds, showed a similar dependence of H2O2 production rate on cell concentration; below 107 cells/ml the rate was 0.3–0.4nmol/min per 108 cells; above 2 × 107 cells/ml, the rate was 0.1–0.2nmol/min per 108 cells. Hypo-osmotically treated rabbit epididymal spermatozoa, a preparation useful for studying mitochondrial function in sperm [Keyhani & Storey (1973) Biochim. Biophys. Acta 305, 557–565] produced 0.1–0.2nmol/min per 108 cells in the absence of added substrates. The dependence of rate on cell concentration was linear from 107 to 2.2 × 108 cells/ml. This endogenous rate was unaffected by rotenone, but stimulated 4-fold by antimycin A. Addition of the mitochondrial substrates lactate plus malate increased the rate of H2O2 production to 0.3nmol/min per 108 cells. The decreased rate of H2O2 production observed with intact sperm at high cell concentrations is attributed to reaction of H2O2 with the cells, possibly with the plasma membrane, which is lost after hypo-osmotic treatment. Rabbit spermatozoa have glutathione peroxidase and glutathione reductase activities, but these seem to play little role in removal of H2O2 generated. The rate at low cell concentration is taken to be the unperturbed rate. The sources of H2O2 production in rabbit spermatozoa have been tentatively resolved into a low-molecular-weight component, lost after amphotericin treatment, a mitochondrial component and a rotenone-insensitive component that has not been identified.

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Montecucco C., Richter C. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun. 1975 Jul 22;65(2):597–603. doi: 10.1016/s0006-291x(75)80188-4. [DOI] [PubMed] [Google Scholar]
  2. Bittman R. Sterol-polyene antibiotic complexation: probe of membrane structure. Lipids. 1978 Oct;13(10):686–691. doi: 10.1007/BF02533746. [DOI] [PubMed] [Google Scholar]
  3. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  6. Heytler P. G. Uncouplers of oxidative phosphorylation. Methods Enzymol. 1979;55:462–442. doi: 10.1016/0076-6879(79)55060-5. [DOI] [PubMed] [Google Scholar]
  7. Keyhani E., Storey B. T. Energy conservation capacity and morphological integrity of mitochondria in hypotonically treated rabbit epididymal spermatozoa. Biochim Biophys Acta. 1973 Jun 28;305(3):557–569. doi: 10.1016/0005-2728(73)90075-3. [DOI] [PubMed] [Google Scholar]
  8. Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
  9. MARGOLIASH E., NOVOGRODSKY A., SCHEJTER A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J. 1960 Feb;74:339–348. doi: 10.1042/bj0740339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  11. Smith D. G., Senger P. L., McCutchan J. F., Landa C. A. Selenium and glutathione peroxidase distribution in bovine semen and selenium-75 retention by the tissues of the reproductive tract in the bull. Biol Reprod. 1979 Mar;20(2):377–383. doi: 10.1095/biolreprod20.2.377. [DOI] [PubMed] [Google Scholar]
  12. Storey B. T. Effect of ionophores and inhibitors and uncouplers of oxidative phosphorylation on sperm respiration. Arch Androl. 1978;1(2):169–177. doi: 10.3109/01485017808988334. [DOI] [PubMed] [Google Scholar]
  13. Storey B. T., Kayne F. J. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biol Reprod. 1977 May;16(4):549–556. [PubMed] [Google Scholar]
  14. Storey B. T., Kayne F. J. Energy metabolism of spermatozoa. VII. Interactions between lactate, pyruvate and malate as oxidative substrates for rabbit sperm mitochondria. Biol Reprod. 1978 May;18(4):527–536. doi: 10.1095/biolreprod18.4.527. [DOI] [PubMed] [Google Scholar]
  15. Storey B. T., Keyhani E. Energy metabolism of spermatozoa: III. Energy-linked uptake of calcium ion by the mitochondria of rabbit epididymal spermatozoa. Fertil Steril. 1974 Nov;25(11):976–984. [PubMed] [Google Scholar]
  16. Storey B. T. Strategy of oxidative metabolism in bull spermatozoa. J Exp Zool. 1980 Apr;212(1):61–67. doi: 10.1002/jez.1402120109. [DOI] [PubMed] [Google Scholar]
  17. Yonetani T., Ray G. S. Studies on cytochrome c peroxidase. I. Purification and some properties. J Biol Chem. 1965 Nov;240(11):4503–4508. [PubMed] [Google Scholar]
  18. van Hoogevest P., de Kruijff B. Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. Biochim Biophys Acta. 1978 Aug 17;511(3):397–407. doi: 10.1016/0005-2736(78)90276-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES