Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Aug 15;198(2):315–319. doi: 10.1042/bj1980315

The biliary excretion of enterokinase in rats. Studies in normal, chronic ethanol-maintained and cirrhotic rats.

D A Grant, P A Jones, J Hermon-Taylor
PMCID: PMC1163250  PMID: 7034728

Abstract

The excretion of catalytically active human or pig enterokinase in hepatic bile after intravenous administration to normal rats or rats that had been maintained on 20% (v/v) ethanol for 1 year showed similar kinetics to that described for other serum-derived bile proteins. The half-life in serum was 2.5 min or less, and most of the enzyme was excreted within 45 min of administration. This was maintained when up to six successive doses were given at 90 min intervals. The mean amount excreted per dose was independent of the dose number and varied from 0.8% to 2.1% in the normal animals and 1.2% to 2.0% in the chronic ethanol-maintained animals. When three doses of enzyme were given at 30 min intervals, the total amount of active enterokinase recovered in bile was dose-dependent and was consistently higher in the rats drinking 20% (v/v) ethanol. The serum half-life of enterokinase in rats made cirrhotic by inhalation of carbon tetrachloride vapour was extended to 6 min or more. The amount of active enzyme recovered in bile was at least 50% less than in weight-matched normal rats, and excretion was not complete 2h after intravenous administration. The possible significance of these findings in liver and pancreatic disease is discussed.

Full text

PDF
315

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell G., Morell A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
  2. Baratti J., Maroux S., Louvard D., Desnuelle P. On porcine enterokinase. Further purification and some molecular properties. Biochim Biophys Acta. 1973 Jul 5;315(1):147–161. doi: 10.1016/0005-2744(73)90138-1. [DOI] [PubMed] [Google Scholar]
  3. Donaldson L. A., Joffe S. N., McIntosh W., Brodie M. J. Amylase activity in human bile. Gut. 1979 Mar;20(3):216–218. doi: 10.1136/gut.20.3.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Durbec J. P., Bidart J. M., Sarles H. Etude des variations du risque de cirrhose du foie en fonction de la consommation d'alcool. Gastroenterol Clin Biol. 1979 Oct;3(10):725–734. [PubMed] [Google Scholar]
  5. Grant D. A., Hermon-Taylor J. Hydrolysis of artificial substrates by enterokinase and trypsin and the development of a sensitive specific assay for enterokinase in serum. Biochim Biophys Acta. 1979 Mar 16;567(1):207–215. doi: 10.1016/0005-2744(79)90187-6. [DOI] [PubMed] [Google Scholar]
  6. Grant D. A., Hermon-Taylor J. The purification of human enterokinase by affinity chromatography and immunoadsorption. Some observations on its molecular characteristics and comparisons with the pig enzyme. Biochem J. 1976 May 1;155(2):243–254. doi: 10.1042/bj1550243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grant D. A., Jones P. A., Magee A. I., Hermon-Taylor J. The biliary excretion of intravenously administered enterokinase [proceedings]. Biochem Soc Trans. 1980 Feb;8(1):55–55. doi: 10.1042/bst0080055. [DOI] [PubMed] [Google Scholar]
  8. Grant D. A., Magee A. I., Hermon-Taylor J. Optimisation of conditions for the affinity chromatography of human enterokinase on immobilised p-aminobenzamidine. Improvement of the preparative procedure by inclusion of negative affinity chromatography with glycylglycyl-aniline. Eur J Biochem. 1978 Jul 17;88(1):183–189. doi: 10.1111/j.1432-1033.1978.tb12436.x. [DOI] [PubMed] [Google Scholar]
  9. Grant D. A., Magee A. I., Meeks D., Regan C., Bainbridge D. R., Hermon-Taylor J. Identification of a defence mechanism in vivo against the leakage of enterokinase into the blood. Biochem J. 1979 Dec 15;184(3):619–626. doi: 10.1042/bj1840619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hemmings W. A., Williams E. W. Transport of large breakdown products of dietary protein through the gut wall. Gut. 1978 Aug;19(8):715–723. doi: 10.1136/gut.19.8.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hermon-Taylor J., Perrin J., Grant D. A., Appleyard A., Bubel M., Magee A. I. Immunofluorescent localisation of enterokinase in human small intestine. Gut. 1977 Apr;18(4):259–265. doi: 10.1136/gut.18.4.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hubbard A. L., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. II. Intracellular fates of the 125I-ligands. J Cell Biol. 1979 Oct;83(1):65–81. doi: 10.1083/jcb.83.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McLean E. K., McLean A. E., Sutton P. M. Instant cirrhosis. An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone. Br J Exp Pathol. 1969 Oct;50(5):502–506. [PMC free article] [PubMed] [Google Scholar]
  14. Mullock B. M., Dobrota M., Hinton R. H. Sources of the proteins of rat bile. Biochim Biophys Acta. 1978 Nov 1;543(4):497–507. doi: 10.1016/0304-4165(78)90304-5. [DOI] [PubMed] [Google Scholar]
  15. Orlans E., Peppard J., Reynolds J., Hall J. Rapid active transport of immunoglobulin A from blood to bile. J Exp Med. 1978 Feb 1;147(2):588–592. doi: 10.1084/jem.147.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sarles H., Lebreuil G., Tasso F., Figarella C., Clemente F., Devaux M. A., Fagonde B., Payan H. A comparison of alcoholic pancreatitis in rat and man. Gut. 1971 May;12(5):377–388. doi: 10.1136/gut.12.5.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seeff L. B., Zimmerman H. J. Relationship between hepatic and pancreatic disease. Prog Liver Dis. 1976;5:590–608. [PubMed] [Google Scholar]
  18. Sternlieb I. Special article: functional implications of human portal and bile ductular ultrastructure. Gastroenterology. 1972 Aug;63(2):321–327. [PubMed] [Google Scholar]
  19. Thomas P. Studies on the mechanisms of biliary excretion of circulating glycoproteins. The carcinoembryonic antigen. Biochem J. 1980 Dec 15;192(3):837–843. doi: 10.1042/bj1920837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thomas P., Summers J. W. The biliary excretion of circulating asialoglycoproteins in the rat. Biochem Biophys Res Commun. 1978 Jan 30;80(2):335–339. doi: 10.1016/0006-291x(78)90681-2. [DOI] [PubMed] [Google Scholar]
  21. Wallinder L., Bengtsson G., Olivecrona T. Rapid removal to the liver of intravenously injected lipoprotein lipase. Biochim Biophys Acta. 1979 Oct 26;575(1):166–173. doi: 10.1016/0005-2760(79)90142-5. [DOI] [PubMed] [Google Scholar]
  22. Warshaw A. L., Walker W. A., Isselbacher K. J. Protein uptake by the intestine: evidence for absorption of intact macromolecules. Gastroenterology. 1974 May;66(5):987–992. [PubMed] [Google Scholar]
  23. Worthington B. S., Meserole L., Syrotuck J. A. Effect of daily ethanol ingestion on intestinal permeability to macromolecules. Am J Dig Dis. 1978 Jan;23(1):23–32. doi: 10.1007/BF01072571. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES