Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Sep 15;198(3):631–638. doi: 10.1042/bj1980631

Activation of adenylate cyclase in bovine corpus-luteum membranes by human choriogonadotropin, guanine nucleotides and NaF

Nicholas B Lydon *, John L Young , David A Stansfield *
PMCID: PMC1163311  PMID: 7326028

Abstract

1. Preincubation of luteal membranes with human choriogonadotropin results in the formation of an activated state of adenylate cyclase which is not reversed by washing and which is limited only by the absence of guanine nucleotides, whereas preincubation with GTP yields only a partially activated adenylate cyclase which requires the presence of both GTP and human choriogonadotropin during assay to demonstrate maximal activity. 2. Preincubation of luteal membranes with GTP and human choriogonadotropin does not lead to a synergistic increase in wash-resistant activity. 3. Luteal membranes that had been preincubated with GTP and hormone exhibited a decreasing rate of cyclic AMP synthesis during the adenylate cyclase assay incubation; addition of GTP during the assay incubation reversed the decrease. 4. Membranes that had been preincubated in the absence of guanine nucleotide and hormone showed a `burst' phase of cyclic AMP synthesis when GTP was present in the assay incubation and a `lag' phase with p[NH]ppG (guanosine 5′-[β,γ-imido]triphosphate) present in the assay. The presence of human choriogonadotropin with either nucleotide in the assay incubation eliminated the curvatures in plots observed with guanine nucleotides alone. 5. Luteal adenylate cyclase was persistently activated by preincubation with p[NH]ppG alone or in combination with human choriogonadotropin; the activation caused by p[NH]ppG alone was still increasing after 70min of preincubation, whereas that caused by p[NH]ppG in the presence of hormone was essentially complete within 10min of preincubation. 6. Luteal adenylate cyclase that had been partially preactivated by preincubation with p[NH]ppG was slightly increased in activity by the inclusion of further p[NH]ppG in the adenylate cyclase assay incubation, but more so with p[NH]ppG and hormone. Human choriogonadotropin alone caused no further increase in the activity of the partially stimulated preparation unless p[NH]ppG was also added to the assay incubation. 7. GTP decreased the activity of adenylate cyclase in membranes that had been partially preactivated in the presence of p[NH]ppG; the decrease in activity was greater when GTP and hormone were present simultaneously in the assay. 8. The results indicate that stable activation states of adenylate cyclase can be induced by preincubation of luteal membranes in vitro with human choriogonadotropin or p[NH]ppG, and that in the presence of p[NH]ppG the hormone may accelerate events subsequent to guanine nucleotide binding. Stable activation of luteal adenylate cyclase by prior exposure to GTP is not achieved. The involvement of GTPase activity and of hormone-promoted guanine nucleotide exchange in the modulation of luteal adenylate cyclase activity is discussed.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azhar S., Menon K. M. Gonadotropin receptors in plasma membranes of bovine corpus luteum. I. Effect of phospholipases on the binding of 125I-choriogonadotropin by membrane-associated and solubilized receptors. J Biol Chem. 1976 Dec 10;251(23):7398–7404. [PubMed] [Google Scholar]
  2. Birnbaumer L., Bearer C. F., Iyengar R. A two-state model of an enzyme with an allosteric regulatory site capable of metabolizing the regulatory ligand. Simplified mathematical treatments of transient and steady state kinetics of an activator and its competitive inhibition as applied to adenylyl cyclases. J Biol Chem. 1980 Apr 25;255(8):3552–3557. [PubMed] [Google Scholar]
  3. Birnbaumer L., Swartz T. L., Abramowitz J., Mintz P. W., Iyengar R. Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two-state model. J Biol Chem. 1980 Apr 25;255(8):3542–3551. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Cassel D., Selinger Z. Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5'-(gamma-thio) triphosphate. Biochem Biophys Res Commun. 1977 Aug 8;77(3):868–873. doi: 10.1016/s0006-291x(77)80058-2. [DOI] [PubMed] [Google Scholar]
  6. Cassel D., Selinger Z. Catecholamine-induced release of [3H]-Gpp(NH)p from turkey erythrocyte adenylate cyclase. J Cyclic Nucleotide Res. 1977 Feb;3(1):11–22. [PubMed] [Google Scholar]
  7. Cassel D., Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta. 1976 Dec 8;452(2):538–551. doi: 10.1016/0005-2744(76)90206-0. [DOI] [PubMed] [Google Scholar]
  8. Cassel D., Selinger Z. Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4155–4159. doi: 10.1073/pnas.75.9.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark R. B. Adenylylimidodiphosphate: effect of contaminants on adenylate cyclase activity. J Cyclic Nucleotide Res. 1978 Aug;4(4):259–270. [PubMed] [Google Scholar]
  10. Ezra E., Salomon Y. Mechanism of desensitization of adenylate cyclase in lutropin. GTP-dependent uncoupling of the receptor. J Biol Chem. 1980 Jan 25;255(2):653–658. [PubMed] [Google Scholar]
  11. Glynn P., Cooper D. M., Schulster D. Activation of adenylate cyclase in bovine adrenal cortex membranes by magnesium ions, guanine nucleotides and corticotropin. Biochim Biophys Acta. 1978 Jun 9;524(2):474–483. doi: 10.1016/0005-2744(78)90186-9. [DOI] [PubMed] [Google Scholar]
  12. Glynn P., Cooper D. M., Schulster D. The regulation of adenylate cyclase of the adrenal cortex. Mol Cell Endocrinol. 1979 Feb;13(2):99–121. doi: 10.1016/0303-7207(79)90012-1. [DOI] [PubMed] [Google Scholar]
  13. Goltzman D., Callahan E. N., Tregear G. W., Potts J. T., Jr Role of 5'-guanylylimidodiphosphate in the activation of adenylyl cyclase by parathyroid hormone. Endocr Res Commun. 1976;3(6):407–419. doi: 10.3109/07435807609073913. [DOI] [PubMed] [Google Scholar]
  14. Hunzicker-Dunn M., Derda D., Jungmann R. A., Birnbaumer L. Resensitization of the desensitized follicular adenylyl cyclase system to luteinizing hormone. Endocrinology. 1979 Jun;104(6):1785–1793. doi: 10.1210/endo-104-6-1785. [DOI] [PubMed] [Google Scholar]
  15. Iyengar R., Abramowitz J., Bordelon-Riser M., Birnbaumer L. Hormone receptor-mediated stimulation of adenylyl cyclase systems. Nucleotide effects and analysis in terms of a simple two-state model for the basic receptor-affected enzyme. J Biol Chem. 1980 Apr 25;255(8):3558–3564. [PubMed] [Google Scholar]
  16. Iyengar R., Birnbaumer L. Coupling of the glucagon receptor to adenylyl cyclase by GDP: evidence for two levels of regulation of adenylyl cyclase. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3189–3193. doi: 10.1073/pnas.76.7.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iyengar R., Swartz T. L., Birnbaumer L. Coupling of glucagon receptor to adenylyl cyclase. Requirement of a receptor-related guanyl nucleotide binding site for coupling of receptor to the enzyme. J Biol Chem. 1979 Feb 25;254(4):1119–1123. [PubMed] [Google Scholar]
  18. Kelly L. A., Koritz S. B. Bovine adrenal cortical adenyl cyclase and its stimulation by adrenocorticotropic hormone and NaF. Biochim Biophys Acta. 1971 Apr 20;237(1):141–155. doi: 10.1016/0304-4165(71)90043-2. [DOI] [PubMed] [Google Scholar]
  19. Kimura N., Nagata N. Mechanism of glucagon stimulation of adenylate cyclase in the presence of GDP in rat liver plasma membranes. J Biol Chem. 1979 May 10;254(9):3451–3457. [PubMed] [Google Scholar]
  20. LaBarbera A. R., Richert N. D., Ryan R. J. Nucleotides do not modulate rat luteocyte human chorionic gonadotropin responsiveness by inhibiting human chorionic gonadotropin binding. Arch Biochem Biophys. 1980 Mar;200(1):177–185. doi: 10.1016/0003-9861(80)90344-6. [DOI] [PubMed] [Google Scholar]
  21. Lad P. M., Nielsen T. B., Preston M. S., Rodbell M. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes. J Biol Chem. 1980 Feb 10;255(3):988–995. [PubMed] [Google Scholar]
  22. Lambert M., Svoboda M., Christophe J. Hormone-stimulated GTPase activity in rat pancreatic plasma membranes. FEBS Lett. 1979 Mar 15;99(2):303–307. doi: 10.1016/0014-5793(79)80978-3. [DOI] [PubMed] [Google Scholar]
  23. Lefkowitz R. J., Mullikin D., Caron M. G. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides. J Biol Chem. 1976 Aug 10;251(15):4686–4692. [PubMed] [Google Scholar]
  24. Levitzki A. GTP-receptor interrelationships in adenylate cyclase systems. Theoretical considerations. Biochim Biophys Acta. 1980 Apr 3;628(4):419–424. doi: 10.1016/0304-4165(80)90391-8. [DOI] [PubMed] [Google Scholar]
  25. Levitzki A., Helmreich E. J. Hormone-receptor--adenylate cyclase interactions. FEBS Lett. 1979 May 15;101(2):213–219. doi: 10.1016/0014-5793(79)81011-x. [DOI] [PubMed] [Google Scholar]
  26. Levitzki A. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors. FEBS Lett. 1980 Jun 16;115(1):9–10. doi: 10.1016/0014-5793(80)80714-9. [DOI] [PubMed] [Google Scholar]
  27. Lin M. C., Nicosia S., Lad P. M., Rodbell M. Effects of GTP on binding of (3H) glucagon to receptors in rat hepatic plasma membranes. J Biol Chem. 1977 Apr 25;252(8):2790–2792. [PubMed] [Google Scholar]
  28. Lydon N. B., Young J. L., Stansfield D. A. Hormonal activation of bovine luteal adenylate cyclase [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):915–917. doi: 10.1042/bst0070915. [DOI] [PubMed] [Google Scholar]
  29. Maguire M. E., Van Arsdale P. M., Gilman A. G. An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol Pharmacol. 1976 Mar;12(2):335–339. [PubMed] [Google Scholar]
  30. Martin B. R., Houslay M. D., Kennedy E. L. Cholera toxin requires oxidized nicotinamide-adenine dinucleotide to activate adenylate cyclase in purified rat liver plasma membranes. Biochem J. 1977 Mar 1;161(3):639–642. doi: 10.1042/bj1610639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martin B. R., Stein J. M., Kennedy E. L., Doberska C. A., Metcalfe J. C. Transient complexes. A new structural model for the activation of adenylate cyclase by hormone receptors (guanine nucleotides/irradiation inactivation). Biochem J. 1979 Nov 15;184(2):253–260. doi: 10.1042/bj1840253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martin B. R., Stein J. M., Kennedy E. L., Doberska C. A. The effect of fluoride on the state of aggregation of adenylate cyclase in rat liver plasma membranes. Biochem J. 1980 Apr 15;188(1):137–140. doi: 10.1042/bj1880137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Michalangeli V. P., Hunt N. H., Martin T. J. States of activation of chick kidney adenylate cyclase induced by parathyroid hormone and guanyl nucleotides. J Endocrinol. 1977 Jan;72(1):69–79. doi: 10.1677/joe.0.0720069. [DOI] [PubMed] [Google Scholar]
  34. Mintz Y., Amir Y., Amsterdam A., Lindner H. R., Salomon Y. Properties of LH-sensitive adenylate cyclase in purified plasma membranes from rat ovary. Mol Cell Endocrinol. 1978 Sep;11(3):265–283. doi: 10.1016/0303-7207(78)90013-8. [DOI] [PubMed] [Google Scholar]
  35. Nielsen T. B., Lad P. M., Preston M. S., Rodbell M. Characteristics of the guanine nucleotide regulatory component of adenylate cyclase in human erythrocyte membranes. Biochim Biophys Acta. 1980 Apr 17;629(1):143–155. doi: 10.1016/0304-4165(80)90273-1. [DOI] [PubMed] [Google Scholar]
  36. Okamura N., Terayama H. Change of coupling system of receptor-adenylate cyclase induced by epinephrine and GTP in plasma membranes of rat liver. Biochim Biophys Acta. 1978 Nov 15;544(1):113–127. doi: 10.1016/0304-4165(78)90215-5. [DOI] [PubMed] [Google Scholar]
  37. Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem. 1977 Oct 25;252(20):7224–7234. [PubMed] [Google Scholar]
  38. Pfeuffer T. Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Lett. 1979 May 1;101(1):85–89. [PubMed] [Google Scholar]
  39. Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
  40. Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem. 1971 Mar 25;246(6):1861–1871. [PubMed] [Google Scholar]
  41. Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem. 1971 Mar 25;246(6):1872–1876. [PubMed] [Google Scholar]
  42. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  43. Salomon Y., Rodbell M. Evidence for specific binding sites for guanine nucleotides in adipocyte and hepatocyte plasma membranes. A difference in fate of GTP and guanosine 5'-(beta, gamma-imino) triphosphate. J Biol Chem. 1975 Sep 25;250(18):7245–7250. [PubMed] [Google Scholar]
  44. Simpson I. A., Pfeuffer T. Modulation of beta-adrenergic agonist binding by guanylnucleotides in avian erythrocytes. FEBS Lett. 1980 Jun 16;115(1):113–117. doi: 10.1016/0014-5793(80)80738-1. [DOI] [PubMed] [Google Scholar]
  45. St Louis P. J., Sulakhe P. V. Adenylate cyclase, guanylate cyclase and cyclic nucleotide phosphodiesterases of guinea-pig cardiac sarcolemma. Biochem J. 1976 Sep 15;158(3):535–541. doi: 10.1042/bj1580535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Svoboda M., Robberecht P., Christophe J. Deactivation of persistently activated pancreatic adenylate cyclase. Evidence of uncoupling of hormone receptors and enzyme effector in the persistently activated state, and of the presence of two guanyl nucleotide regulatory sites. FEBS Lett. 1978 Aug 15;92(2):351–356. doi: 10.1016/0014-5793(78)80785-6. [DOI] [PubMed] [Google Scholar]
  47. Swillens S., Juvent M., Dumont J. E. Slow GDP dissociation from the guanyl nucleotide-binding site of turkey erythrocyte membranes as the limiting step in the activation of adenylate cyclase by beta-adrenergic agonists. FEBS Lett. 1979 Dec 15;108(2):365–368. doi: 10.1016/0014-5793(79)80565-7. [DOI] [PubMed] [Google Scholar]
  48. Young J. L., Stansfield D. A. Gel-filtration analysis of soluble adenylate cyclase from bovine corpus luteum. Biochem J. 1978 Nov 1;175(2):579–584. doi: 10.1042/bj1750579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Young J. L., Stansfield D. A. Solubilization of bovine corpus-luteum adenylate cyclase in lubrol-PX, triton X-100 or digitonin and the stabilizing effect of sodium fluoride present in the solubilization medium. Biochem J. 1978 Sep 1;173(3):919–924. doi: 10.1042/bj1730919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Young J. L., Stansfield D. A. Stabilization and solubilization of bovine corpus-luteum adenylate cyclase. The effects of guanosine triphosphate, guanosine 5'-[beta,gamma-imido]triphosphate, sodium fluoride and Tris/hydrochloric acid concentration on enzyme activity. Biochem J. 1978 Jan 1;169(1):133–142. doi: 10.1042/bj1690133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Young J. L., Stansfield D. A. Use of a competitive protein-binding assay for adenosine 3':5'-phosphate for the study of bovine corpus luteum adenylate cyclase. J Endocrinol. 1977 Apr;73(1):123–134. doi: 10.1677/joe.0.0730123. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES