Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Nov 1;199(2):289–295. doi: 10.1042/bj1990289

Metal-dependent properties of metallothionein. Replacement in vitro of zinc in zinc-thionein with copper.

K T Suzuki, T Maitani
PMCID: PMC1163371  PMID: 7340805

Abstract

Metal-dependent changes in the properties of metallothionein were investigated in vitro by replacing Zn2+ in zinc-thionein with Cu+ and Cu2+. Metallothionein was separated into isoproteins on a gel-permeation column by elution with alkaline buffer solution, the separation being due to the dissociation of hydroxy groups in the gel material. The two metals in metallothioneins were detected simultaneously by introducing the eluate of the column, which was attached to a high-pressure liquid chromatograph, to two flame atomic-absorption spectrophotometers. Zn2+ in zinc-thionein was replaced with 1.5 and 1 mol. equiv. of Cu+ and Cu2+ respectively. The replacement with Cu2+ accompanied intramolecular oxidation of thiol groups in metallothioneins and the oxidized metallothioneins showed different chromatographic properties from the original ones, probably due to changes in the isoelectric points. The oxidized forms of metallothionein were reducible by mercaptoethanol. Reduction of Cu2+ to Cu+ followed by the replacement of Zn2+ in zinc-thionein with Cu+ occurred in the presence of glutathione.

Full text

PDF
289

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. KAGI J. H., VALEE B. L. Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem. 1960 Dec;235:3460–3465. [PubMed] [Google Scholar]
  2. KAGI J. H., VALLEE B. L. Metallothionein: a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties. J Biol Chem. 1961 Sep;236:2435–2442. [PubMed] [Google Scholar]
  3. Port A. E., Hunt D. M. A study of the copper-binding proteins in liver and kidney tissue of neonatal normal and mottled mutant mice. Biochem J. 1979 Dec 1;183(3):721–730. doi: 10.1042/bj1830721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Riordan J. R., Richards V. Human fetal liver contains both zinc- and copper-rich forms of metallothionein. J Biol Chem. 1980 Jun 10;255(11):5380–5383. [PubMed] [Google Scholar]
  5. Rupp H., Weser U. Circular dichroism of metallothioneins. A structural approach. Biochim Biophys Acta. 1978 Mar 28;533(1):209–226. doi: 10.1016/0005-2795(78)90565-2. [DOI] [PubMed] [Google Scholar]
  6. Rupp H., Weser U. Conversion of metallothionein into Cu-thionein, the possible low molecular weight form of neonatal hepatic mitochondrocuprein. FEBS Lett. 1974 Aug 30;44(3):293–297. doi: 10.1016/0014-5793(74)81161-0. [DOI] [PubMed] [Google Scholar]
  7. Rydén L., Deutsch H. F. Preparation and properties of the major copper-binding component in human fetal liver. Its identification as metallothionein. J Biol Chem. 1978 Jan 25;253(2):519–524. [PubMed] [Google Scholar]
  8. Saylor W. W., Morrow F. D., Leach R. M., Jr Copper- and zinc-binding proteins in sheep liver and intestine: effects of dietary levels of the metals. J Nutr. 1980 Mar;110(3):460–468. doi: 10.1093/jn/110.3.460. [DOI] [PubMed] [Google Scholar]
  9. Stonard M. D., Webb M. Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat. Chem Biol Interact. 1976 Dec;15(4):349–363. doi: 10.1016/0009-2797(76)90140-x. [DOI] [PubMed] [Google Scholar]
  10. Suzuki K. T. Direct connection of high-speed liquid chromatograph (equipped with gel permeation column) to atomic absorption spectrophotometer for metalloprotein analyasis: metallothionein. Anal Biochem. 1980 Feb;102(1):31–34. doi: 10.1016/0003-2697(80)90312-7. [DOI] [PubMed] [Google Scholar]
  11. Suzuki K. T., Kubota K., Takenaka S. Copper in cadmium-exposed rat kidney metallothionein. Chem Pharm Bull (Tokyo) 1977 Oct;25(10):2792–2794. doi: 10.1248/cpb.25.2792. [DOI] [PubMed] [Google Scholar]
  12. Suzuki K. T., Motomura T., Tsuchiya Y., Yamamura M. Separation of metallothioneins in rat liver, kidney, and spleen using SW and Sephadex columns. Anal Biochem. 1980 Sep 1;107(1):75–85. doi: 10.1016/0003-2697(80)90495-9. [DOI] [PubMed] [Google Scholar]
  13. Suzuki K. T., Yamamura M. Rat kidney metallothionein induced by injection of Cd-thionein: Changes of chromatographic properties with time and their relation to copper content and kidney dysfunction. Toxicol Lett. 1980 Feb;5(2):131–138. doi: 10.1016/0378-4274(80)90162-9. [DOI] [PubMed] [Google Scholar]
  14. Suzuki K. T., Yamamura M., Yamada Y. K., Shimizu F. Decreased copper content in rat kidney metallothionein and its relation to acute cadmium nephropathy. Toxicol Lett. 1980 Dec;7(2):137–142. doi: 10.1016/0378-4274(80)90046-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES