Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Nov 1;199(2):335–340. doi: 10.1042/bj1990335

Rapid removal of acetimidoyl groups from proteins and peptides. Applications to primary structure determination.

G C Dubois, E A Robinson, J K Inman, R N Perham, E Appella
PMCID: PMC1163376  PMID: 6803762

Abstract

Methylamine buffers can be used for the rapid quantitative removal of acetimidoyl groups from proteins and peptides modified by treatment with ethyl or methyl acetimidate. The half-life for displacement of acetimidoyl groups from fully amidinated proteins incubated in 3.44 M-methylamine/HCl buffer at pH 11.5 and 25 degrees C was approx. 26 min; this half life is 29 times less than that observed in ammonia/HCl buffer under the same conditions of pH and amine concentration. Incubation of acetimidated proteins with methylamine for 4 h resulted in greater than 95% removal of acetimidoyl groups. No deleterious effects on primary structure were detected by amino acid analysis or by automated Edman degradation. Reversible amidination of lysine residues, in conjunction with tryptic digestion, has been successfully applied to the determination of the amino acid sequence of an acetimidated mouse immunoglobulin heavy chain peptide. The regeneration of amino groups in amidinated proteins and peptides by methylaminolysis makes amidination a valuable alternative to citraconoylation and maleoylation in structural studies.

Full text

PDF
335

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates D. L., Harrison R. A., Perham R. N. The stoichiometry of polypeptide chains in the pyruvate dehydrogenase multienzyme complex of E. coli determined by a simple novel method. FEBS Lett. 1975 Dec 15;60(2):427–430. doi: 10.1016/0014-5793(75)80764-2. [DOI] [PubMed] [Google Scholar]
  2. Bates D. L., Perham R. N., Coggins J. R. Methods for obtaining peptide maps of proteins on a subnanomole scale. Anal Biochem. 1975 Sep;68(1):175–184. doi: 10.1016/0003-2697(75)90692-2. [DOI] [PubMed] [Google Scholar]
  3. DiMarchi R. D., Garner W. H., Wang C. C., Hanania G. I., Gurd F. R. Characterization of the reaction of methyl acetimidate with sperm whale myoglobin. Biochemistry. 1978 Jul 11;17(14):2822–2828. doi: 10.1021/bi00607a019. [DOI] [PubMed] [Google Scholar]
  4. DuBois G. C., Appella E., Armstrong R., Levin W., Lu A. Y., Jerina D. M. Hepatic microsomal epoxide hydrase. Chemical evidence for a single polypeptide chain. J Biol Chem. 1979 Jul 25;254(14):6240–6243. [PubMed] [Google Scholar]
  5. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hucho F., Müllner H., Sund H. Investigation of the symmetry of oligomeric enzymes with bifunctional reagents. Eur J Biochem. 1975 Nov 1;59(1):79–87. doi: 10.1111/j.1432-1033.1975.tb02427.x. [DOI] [PubMed] [Google Scholar]
  7. King L., Perham R. N. Reaction of tobacco mosaic virus with maleic anhydride and some possible applications to x-ray diffraction analysis. Biochemistry. 1971 Mar 16;10(6):981–987. doi: 10.1021/bi00782a008. [DOI] [PubMed] [Google Scholar]
  8. King T. P., Li Y., Kochoumian L. Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry. 1978 Apr 18;17(8):1499–1506. doi: 10.1021/bi00601a022. [DOI] [PubMed] [Google Scholar]
  9. Nemes P. P., Miljanich G. P., White D. L., Dratz E. A. Covalent modification of rhodopsin with imidoesters: evidence for transmembrane arragnement of rhodopsin in rod outer segment disk membranes. Biochemistry. 1980 May 13;19(10):2067–2074. doi: 10.1021/bi00551a010. [DOI] [PubMed] [Google Scholar]
  10. Perham R. N., Thomas J. O. Reaction of tobacco mosaic virus with a thiol-containing imidoester and a possible application to X-ray diffraction analysis. J Mol Biol. 1971 Dec 14;62(2):415–418. doi: 10.1016/0022-2836(71)90438-4. [DOI] [PubMed] [Google Scholar]
  11. Reynolds J. H. Acetimidation of bovine pancreatic ribonuclease A. Biochemistry. 1968 Sep;7(9):3131–3135. doi: 10.1021/bi00849a016. [DOI] [PubMed] [Google Scholar]
  12. Riley M., Perham R. N. The reaction of protein amino groups with methyl 5-iodopyridine-2-carboximidate. A possible general method of preparing isomorphous heavy-atom derivatives of proteins. Biochem J. 1973 Apr;131(4):625–635. doi: 10.1042/bj1310625g. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson E. A., Appella E. Amino acid sequence of a mouse myeloma immunoglobin heavy chain (MOPC 47 A) with a 100-residue deletion. J Biol Chem. 1979 Nov 25;254(22):11418–11430. [PubMed] [Google Scholar]
  14. Robinson E. A., Appella E. Complete amino acid sequence of a mouse immunoglobulin alpha chain (MOPC 511). Proc Natl Acad Sci U S A. 1980 Aug;77(8):4909–4913. doi: 10.1073/pnas.77.8.4909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whiteley N. M., Berg H. C. Amidination of the outer and inner surfaces of the human erythrocyte membrane. J Mol Biol. 1974 Aug 15;87(3):541–561. doi: 10.1016/0022-2836(74)90103-x. [DOI] [PubMed] [Google Scholar]
  16. Wood F. T., Wu M. M., Gerhart J. C. The radioactive labeling of proteins with an iodinated amidination reagent. Anal Biochem. 1975 Dec;69(2):339–349. doi: 10.1016/0003-2697(75)90136-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES