Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Nov 1;199(2):341–350. doi: 10.1042/bj1990341

Purification and characterization of an endoglucanase (1,4-beta-D-glucan glucanohydrolase) from Clostridium thermocellum.

T K Ng, J G Zeikus
PMCID: PMC1163377  PMID: 7340808

Abstract

An endoglucanase (1,4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) was purified from Clostridium thermocellum by procedures that included centrifugation, ultrafiltration, selective precipitation, ion-exchange Sephadex chromatography and preparative gel electrophoresis. The 22-fold-purified enzyme behaved as a homogeneous protein under non-denaturing conditions. The enzyme represented a significant component (greater than 25%) of total extracellular endoglucanase activity, but was purified in low yield by the procedures employed. The native molecular weight of the endoglucanase was determined by ultracentrifugational analysis, amino acid composition and polyacrylamide-gel electrophoresis, and varied between 83000 and 94000. The enzyme contained 11.2% carbohydrate and was isoelectric at pH 6.72. The pH and temperature optima of the endoglucanase were 5.2 and 62 degrees C respectively. The enzyme lacked cysteine and was low in sulphur-containing amino acids. The purified endoglucanase displayed: high activity towards carboxymethylcellulose, celloheptaose, cellohexaose and cellopentaose; low activity towards Avicel microcrystalline cellulose and cellotetraose; no detectable activity towards cellotriose or cellobiose; increased activity towards cello-oligosaccharides with increasing degree of polymerization. The internal glycosidic bonds of cello-oligosaccharides were cleaved by the enzyme in preference to external linkages. The apparent Michaelis constant ([S]0.5V) and Vmax. for cellopentaose and cellohexaose hydrolysis were 2.30 mM and 39.3 mumol/min per mg of protein, and 0.56 mM and 58.7 mumol/min per mg of protein, respectively.

Full text

PDF
341

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berghem L. E., Pettersson L. G., Axiö-Fredriksson U. B. The mechanism of enzymatic cellulose degradation. Purification and some properties of two different 1,4beta-glucan glucanohydrolases from Trichoderma viride. Eur J Biochem. 1976 Jan 15;61(2):621–630. doi: 10.1111/j.1432-1033.1976.tb10058.x. [DOI] [PubMed] [Google Scholar]
  2. Chrambach A., Reisfeld R. A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem. 1967 Jul;20(1):150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
  3. Eriksson K. E., Pettersson B. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 1. Separation, purification and physico-chemical characterization of five endo-1,4-beta-glucanases. Eur J Biochem. 1975 Feb 3;51(1):193–206. doi: 10.1111/j.1432-1033.1975.tb03919.x. [DOI] [PubMed] [Google Scholar]
  4. Hashimoto T., Sasaki H., Aiura M., Kato Y. High-speed aqueous gel-permeation chromatography of proteins. J Chromatogr. 1978 Oct 11;160(1):301–305. doi: 10.1016/s0021-9673(00)91812-0. [DOI] [PubMed] [Google Scholar]
  5. JOVIN T., CHRAMBACH A., NAUGHTON M. A. AN APPARATUS FOR PREPARATIVE TEMPERATURE-REGULATED POLYACRYLAMIDE GEL ELECTROPHORESIS. Anal Biochem. 1964 Nov;9:351–369. doi: 10.1016/0003-2697(64)90192-7. [DOI] [PubMed] [Google Scholar]
  6. Kanda T., Wakabayashi K., Nisizawa K. Purification and properties of an endo-cellulase of avicelase type from Irpex lacteus (Polyporus tulipiferae). J Biochem. 1976 May;79(5):977–988. doi: 10.1093/oxfordjournals.jbchem.a131165. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lamed R., Zeikus J. G. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol. 1980 Nov;144(2):569–578. doi: 10.1128/jb.144.2.569-578.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee B. H., Blackburn T. H. Cellulase production by a thermophilic clostridium species. Appl Microbiol. 1975 Sep;30(3):346–353. doi: 10.1128/am.30.3.346-353.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ng T. K., Weimer T. K., Zeikus J. G. Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol. 1977 Jul 26;114(1):1–7. doi: 10.1007/BF00429622. [DOI] [PubMed] [Google Scholar]
  11. Okada G. Enzymatic studies on a cellulase system of Trichoderma viride. II. Purification and Properties of two cellulases. J Biochem. 1975 Jan 1;77(1?):33–42. [PubMed] [Google Scholar]
  12. Okada G. Enzymatic studies on a cellulase system of Trichoderma viride. IV. Purification and properties of a less-random type cellulase. J Biochem. 1976 Nov;80(5):913–922. doi: 10.1093/oxfordjournals.jbchem.a131377. [DOI] [PubMed] [Google Scholar]
  13. STORVICK W. O., COLE F. E., KING K. W. MODE OF ACTION OF A CELLULASE COMPONENT FROM CELLVIBRIO GILVUS. Biochemistry. 1963 Sep-Oct;2:1106–1110. doi: 10.1021/bi00905a034. [DOI] [PubMed] [Google Scholar]
  14. STORVICK W. O., KING K. W. The complexity and mode of action of the cellulase system of Cellvibrio gilvus. J Biol Chem. 1960 Feb;235:303–307. [PubMed] [Google Scholar]
  15. Shoemaker S. P., Brown R. D., Jr Characterization of endo-1,4-beta-D-glucanases purified from Trichoderma viride. Biochim Biophys Acta. 1978 Mar 14;523(1):147–161. doi: 10.1016/0005-2744(78)90017-7. [DOI] [PubMed] [Google Scholar]
  16. Shoemaker S. P., Brown R. D., Jr Enzymic activities of endo-1,4-beta-D-glucanases purified from Trichoderma viride. Biochim Biophys Acta. 1978 Mar 14;523(1):133–146. doi: 10.1016/0005-2744(78)90016-5. [DOI] [PubMed] [Google Scholar]
  17. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  18. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  19. Yamane K., Suzuki H., Nisizawa K. Purification and properties of extracellular and cell-bound cellulase components of Pseudomonas fluorescens var. cellulosa. J Biochem. 1970 Jan;67(1):19–35. doi: 10.1093/oxfordjournals.jbchem.a129231. [DOI] [PubMed] [Google Scholar]
  20. Yoshikawa T., Suzuki H., Nisizawa K. Biogenesis of multiple cellulase components of Pseudomonas fluorescens var. cellulosa. I. Effects of culture conditions on the multiplicity of cellulase. J Biochem. 1974 Mar;75(3):531–540. doi: 10.1093/oxfordjournals.jbchem.a130421. [DOI] [PubMed] [Google Scholar]
  21. Zeikus J. G. Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol. 1980;34:423–464. doi: 10.1146/annurev.mi.34.100180.002231. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES