Abstract
The palmitoyl-CoA hydrolase activity, which in human blood platelets is mainly localized in the cytosol fraction [Berge, Vollset & Farstad (1980) Scand. J. Clin. Lab. Invest. 40, 271--279], was found to be extremely labile. Inclusion of glycerol or palmitoyl-CoA stabilized the activity during preparation. Gel-filtration studies revealed multiple forms of the enzyme with molecular weights corresponding to about 70 000, 40 000 and 24 000. The relative recovery of the mol.wt.-70 000 form was increased by the presence of 20% (v/v) glycerol or 10 microM-palmitoyl-CoA. The three enzyme forms are probably unrelated, since they were not interconvertible. The three different species of palmitoyl-CoA hydrolase were purified by DEAE-cellulose and hydroxyapatite chromatography, isoelectric focusing and high-pressure liquid chromatography (h.p.l.c.) to apparent homogeneity. The three enzymes had isoelectric points (pI) of 7.0, 6.1 and 4.9. The corresponding molecular weights were 27 000--33 000, 66 000--72 000 and 45 000--49 000, calculated from h.p.l.c. and Ultrogel AcA-44 chromatography. The apparently purified enzymes were unstable, as most of the activity was lost during purification. The enzyme with an apparent molecular weight of 45 000--49 000 was split into fractions with molecular weights of less than 10 000 by re-chromatography on h.p.l.c. concomitantly with a loss of activity. The stimulation of the activity by the presence of serum albumin seems to depend on the availability of palmitoyl-CoA, as has been reported for other palmitoyl-CoA hydrolases. [Berge & Farstad (1979) Eur. J. Biochem. 96, 393--401].
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson A. D., Erwin V. G. Brain acyl-coenzyme A hydrolase: distribution, purification and properties. J Neurochem. 1971 Jul;18(7):1179–1186. doi: 10.1111/j.1471-4159.1971.tb00216.x. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Døssland B. Differences between microsomal and mitochondrial-matrix palmitoyl-coenzyme A hydrolase, and palmitoyl-L-carnitine hydrolase from rat liver. Biochem J. 1979 Jul 1;181(1):119–125. doi: 10.1042/bj1810119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berge R. K., Farstad M. Dual localization of long-chain acyl-CoA hydrolase in rat liver: one in the microsomes and one in the mitochondrial matrix. Eur J Biochem. 1979 Mar 15;95(1):89–97. doi: 10.1111/j.1432-1033.1979.tb12942.x. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Farstad M. Hydrolysis of long-chain fatty acyl-CoA in homogenates of human blood platelets: the existence of a platelet palmitoyl-CoA hydrolase. Scand J Clin Lab Invest. 1978 Dec;38(8):699–706. doi: 10.1080/00365517809104876. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Farstad M. Purification and characterization of long-chain acyl-CoA hydrolase from rat liver mitochondria. Eur J Biochem. 1979 May 15;96(2):393–401. doi: 10.1111/j.1432-1033.1979.tb13051.x. [DOI] [PubMed] [Google Scholar]
- Berge R. K. Purification and characterization of a long-chain acyl-CoA hydrolase from rat liver microsomes. Biochim Biophys Acta. 1979 Aug 30;574(2):321–333. doi: 10.1016/0005-2760(79)90013-4. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Slinde E., Farstad M. Discontinuities in Arrhenius plots due to formation of mixed micelles and change in enzyme substrate availability. FEBS Lett. 1980 Jan 14;109(2):194–196. doi: 10.1016/0014-5793(80)81084-2. [DOI] [PubMed] [Google Scholar]
- Knauer T. E. Factors affecting the activity and stability of the palmitoyl-coenzyme A hydrolase of rat brain. Biochem J. 1979 Jun 1;179(3):515–523. doi: 10.1042/bj1790515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauer T. E., Gurecki J. J., Knauer G. R. Substrate stabilization of the palmitoyl-coenzyme A hydrolase activity of rat submaxillary gland. Biochem J. 1980 Apr 1;187(1):269–272. doi: 10.1042/bj1870269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar S. Fatty acid synthetase complex. Selective inactivation by phenylmethylsulphonyl fluoride. Biochem Biophys Res Commun. 1973 Jul 2;53(1):334–341. doi: 10.1016/0006-291x(73)91438-1. [DOI] [PubMed] [Google Scholar]
- Kurooka S., Hosoki K., Yoshimura Y. Some properties of long fatty acyl-coenzyme A thioesterase in rat organs. J Biochem. 1972 Apr;71(4):625–634. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lin C. Y., Smith S. Properties of the thioesterase component obtained by limited trypsinization of the fatty acid synthetase multienzyme complex. J Biol Chem. 1978 Mar 25;253(6):1954–1962. [PubMed] [Google Scholar]
- SRERE P. A., SEUBERT W., LYNEN F. Palmityl coenzyme A deacylase. Biochim Biophys Acta. 1959 Jun;33(2):313–319. doi: 10.1016/0006-3002(59)90118-0. [DOI] [PubMed] [Google Scholar]
- Zahler W. L., Barden R. E., Cleland W. W. Some physical properties of palmityl-coenzyme A micelles. Biochim Biophys Acta. 1968 Sep 2;164(1):1–11. doi: 10.1016/0005-2760(68)90065-9. [DOI] [PubMed] [Google Scholar]
