Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Dec 1;199(3):715–723. doi: 10.1042/bj1990715

The effect of proteinases on phenylalanine ammonia-lyase from the yeast Rhodotorula glutinis.

H J Gilbert, G W Jack
PMCID: PMC1163429  PMID: 7041889

Abstract

Phenylalanine ammonia-lyase (EC 4.3.1.5) of the yeast Rhodotorula glutinis was rapidly inactivated by duodenal juice. It was susceptible to chymotrypsin and subtilisin and to a lesser extent trypsin. Initial proteolysis of the enzyme by chymotrypsin and trypsin resulted in cleavage of the monomeric subunit (75 000 Mr) into a large (65 000 Mr) and a small (10 000 Mr) peptide. The small peptide was rapidly degraded. The 65 000-Mr fragment was resistant to prolonged incubation with chymotrypsin, but was degraded by trypsin under the same conditions. Phenylalanine ammonia-lyase was cleaved into several polypeptides by subtilisin, the 65 000-Mr peptide being totally absent. The N-terminal region of the enzyme was contained in the 65 000-Mr fragment, as was the dehydroalanine moiety, the prosthetic group. Active-site-binding ligands protect the enzyme from inactivation by the three proteinases, and peptide-bond cleavage by trypsin and chymotrypsin. Several chemical modifications were performed on phenylalanine ammonia-lyase. Some decreased its antigenicity, and ethyl acetimidate decreased the rate of degradation of the 65 000-Mr peptide by trypsin. The modification did not protect the enzyme from proteolytic inactivation of the enzymic activity. These observations are discussed in terms of the structure of phenylalanine ammonia-lyase and site of action of the proteinases.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abuchowski A., van Es T., Palczuk N. C., Davis F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977 Jun 10;252(11):3578–3581. [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloxham D. P., Ericsson L. H., Titani K., Walsh K. A., Neurath H. Limited proteolysis of pig heart citrate synthase by subtilisin, chymotrypsin, and trypsin. Biochemistry. 1980 Aug 19;19(17):3979–3985. doi: 10.1021/bi00558a014. [DOI] [PubMed] [Google Scholar]
  4. Bond J. S. A comparison of the proteolytic susceptibility of several rat liver enzymes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):333–339. doi: 10.1016/0006-291x(71)90757-1. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Emes A. V., Vining L. C. Partial purification and properties of L-phenylalanine ammonia-lyase from Streptomyces verticillatus. Can J Biochem. 1970 May;48(5):613–622. doi: 10.1139/o70-099. [DOI] [PubMed] [Google Scholar]
  7. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  8. Gilbert H. J., Lowe C. R., Drabble W. T. Inosine 5'-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5'-monophosphate. Biochem J. 1979 Dec 1;183(3):481–494. doi: 10.1042/bj1830481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
  10. Hodgins D. S. The presence of a carbonyl group at the active site of L-phenylalanine ammonia-lyase. Biochem Biophys Res Commun. 1968 Jul 26;32(2):246–253. doi: 10.1016/0006-291x(68)90376-8. [DOI] [PubMed] [Google Scholar]
  11. Hoskins J. A., Jack G., Wade H. E., Peiris R. J., Wright E. C., Starr D. J., Stern J. Enzymatic control of phenylalanine intake in phenylketonuria. Lancet. 1980 Feb 23;1(8165):392–394. doi: 10.1016/s0140-6736(80)90944-7. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Marshall J. J., Rabinowitz M. L. Preparation and characterization of a dextran-trypsin conjugate. J Biol Chem. 1976 Feb 25;251(4):1081–1087. [PubMed] [Google Scholar]
  14. Wade H. E., Phillips B. P. Automated determination of bacterial asparaginase and glutaminase. Anal Biochem. 1971 Nov;44(1):189–199. doi: 10.1016/0003-2697(71)90360-5. [DOI] [PubMed] [Google Scholar]
  15. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  16. Weiner A. M., Platt T., Weber K. Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis. J Biol Chem. 1972 May 25;247(10):3242–3251. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES