Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2024 May 13;45(1):23–46. doi: 10.1002/jat.4626

Hepatotoxicity of titanium dioxide nanoparticles

Jangrez Khan 1, Nicholas D Kim 1, Collette Bromhead 1, Penelope Truman 1, Marlena C Kruger 1, Beth L Mallard 1,
PMCID: PMC11634566  PMID: 38740968

Abstract

The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose‐dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.

Keywords: E171, liver, nanoparticles, oxidative stress, titanium dioxide

Short abstract

The food additive E171 (titanium dioxide, TiO2), is widely used but its use of E171 is controversial. Studies have shown dose‐dependent toxicity in various. TiO2 NPs have been shown to induce liver inflammation and injury. The toxicity of TiO2 NPs varies between organs and factors including dosage and administration route. This review aims to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.

1. INTRODUCTION

Nanotechnology has extensive applications in health and medicine, agriculture, environmental protection and the food industry. In the food industry, nanomaterials are used as coatings in packaging to protect from mechanical damage as well as to minimise microbial contamination. Nanoparticles (NPs) are also added to food to enhance taste, impression, colour, quality and consistency (Kassebaum & Collaborators, 2016; Shen et al., 2017; Von Moos et al., 2017).

Ingested NPs can be absorbed from the digestive tract, may accumulate in different organs and can trigger potential health risks. This comprehensive review summarises all available studies focussing on TiO2 NPs and their impact on the liver. The review includes studies reporting various outcomes including toxicity as well as instances of no or minimal effects on the liver. Finally, this review provides a thorough discussion on the evidence of TiO2 NP‐induced liver toxicity and its underlying mechanisms from research conducted in rodents and in cultured liver cells.

2. APPLICATIONS OF TITANIUM DIOXIDE NPs

The most common compound of titanium is TiO2, which constitutes almost 95% of all titanium consumed. Global production of TiO2 was 6.1 million tons in 2016 and was expected to reach 7.8 million tons by the end of 2022, while its global market is predicted to increase by 8.9% per annum until 2025 (La Maestra et al., 2021).

TiO2 are inorganic materials and are among the most common NPs found in consumer products (Hong et al., 2017). TiO2 has some unique properties in ease of availability, biocompatibility, high specific surface area, long‐term photostability, anti‐corrosive, strong oxidising properties and antibacterial properties and are believed to have low toxicity. Due to these characteristics, paints and coatings occupy the biggest market share of total global production of TiO2, that is, 48%. However, other application sectors include plastics (19%), resin (10%), papermaking (8%), fibre (3%), rubber (2%) and others (medicine, food and cosmetics; 10%) (Chen et al., 2020; Kaewklin et al., 2018; Yin et al., 2013). TiO2 is used in a variety of cosmetics as it acts as an effective sunscreen and provides protection against short‐wave ultraviolet (UV) radiation. It serves as a clouding agent and is assimilated into dry beverages and tobacco wrappings. Additionally, it is used in the pharmaceutical industry as a component of tablets (Weir et al., 2012). TiO2 is used as an orthopaedic implant biomaterial, particularly for the hip and knee joints, bone plates, dental implants and dental products including crowns, bridges and dentures (Jacobs et al., 1991; Jin et al., 2022; Patri et al., 2009; Sul, 2010).

3. FOOD

In the food industry, TiO2 is known as E171 in the European Union (EU) and INS 171 in the United States (Korotcenkov, 2020b) (for simplicity, this review adopts the EU nomenclature). E171 is manufactured by two main processes, namely, a sulfuric acid‐based process that yields the predominant crystalline forms of titanium dioxide, that is, anatase, rutile or a mixture of both, or a chlorine‐based process that yields rutile only (Gázquez et al., 2014). E171 is commonly used in food and other consumer products such as toothpaste, coatings, preserved fruits, chewing gum, coated candy, carbonated drinks, dairy products, tattoo ink, sauces, icings, beauty creams (day creams, foundations and lip balms) and dressings (Keller et al., 2013; Lim et al., 2018; Lomer et al., 2000; Ortiz & Alster, 2012; Peters et al., 2014; Shi et al., 2013; Weir et al., 2012). Both anatase and rutile have been authorised to be used as a food additive; however, characterisation of food samples from Europe and America have shown that the general population is primarily exposed to anatase (Bischoff et al., 2021; Chen et al., 2013; Dudefoi et al., 2017). In the recent report of the European Food Safety Authority (EFSA) in 2021, it has been shown that the daily dietary intake of E171 in European countries is 11.5 mg/kg bw in children as compared to 6.7 mg/kg bw in adults. This intake does not include the amount of TiO2 NPs coming from other non‐food products like toothpastes, mouthwashes, medications and tattoo ink that can greatly impact to overall exposure (Fiordaliso et al., 2022; Younes et al., 2021; Zhang et al., 2018).

4. ESTIMATED DIETARY INTAKE

Earlier studies have reported the estimated dietary intake in countries like the United States and the United Kingdom, where the oral consumption was around 1–2 mg/kg/day in children and 0.2–0.7 mg/kg/day in adults (Weir et al., 2012). It is clear that children are exposed to higher doses, with similar high exposure reported in British children (2.5–4.5 years), where it was above 3 mg/kg/day (Lomer et al., 2000). Similarly, German children estimated consumption is reported to be around 2 mg/kg/day (Bachler et al., 2015), and Dutch children up to 2.16 mg/kg/day (Rompelberg et al., 2016) (details of all these studies are reviewed by Bischoff et al., 2021). The daily dietary intake of E171 is variable among different age groups and countries; however, due to lower body mass and disproportionally higher consumption of E171‐containing products, children were found to be the most highly exposed group. Most children consume food more likely to contain TiO2 such as candies, chewing gums and jellies (Bischoff et al., 2021; Li et al., 2018; Weir et al., 2012).

The maximum concentration of E171 as a food additive is 1% in the United States, while it was quantum satis levels (as much as needed, but not more) in the EU until it was banned in 2022 (Baranowska‐Wójcik et al., 2022; Heringa et al., 2016; Rompelberg et al., 2016; Younes et al., 2021). The ideal properties that made it a preferred choice are its high abundance in nature, comparative cheapness, no nutritional value, insolubility in both water and organic solvents and presumed biological inertness (Buettner & Valentine, 2012; FDA, 2014; Korotcenkov, 2020a; Ropers et al., 2017; Zierden & Valentine, 2015).

5. SAFETY

TiO2 NPs were classed as potentially carcinogenic (by inhalation) by the International Agency for Research on Cancer (IARC, 2010). Through the course of time, several studies reported the adverse effects of TiO2 NPs by various modes of administration (Hong et al., 2014; Hu et al., 2015; Ogunsuyi et al., 2022; Talamini et al., 2019). These reports led to the re‐evaluation of the safety of TiO2 as a food additive. The EFSA re‐evaluated the usage of TiO2 in 2016 and 2018 and concluded that oral intake of E171 has no concerns of genotoxicity and carcinogenicity (EFSA, 2016; Younes et al., 2018). However, in 2020, E171 usage was suspended in France for 1 year, and in 2021, it was declared unsafe to be used as a food additive (reviewed by Boutillier et al., 2021). Recently, the EU has also banned the usage of E171 as a food additive, as they have accepted that TiO2 NPs may pose a risk of genotoxicity (Baranowska‐Wójcik et al., 2022; Younes et al., 2021).

6. ROUTE OF ENTRY, ABSORPTION AND ACCUMULATION OF TIO2 NPs

Oral absorption of TiO2 NPs is well studied in animal models (Jovanović, 2015); however, more investigations are needed in humans. Most ingested TiO2 is not absorbed from the gut as several animal studies have confirmed that most of orally administered particles are excreted through the faeces (Cho et al., 2013; Farrell & Magnuson, 2017; Jo et al., 2016; MacNicoll et al., 2015). Orally administered TiO2 NPs in rats are preferentially absorbed by Peyer's patches in the small intestine. Most of the consumed TiO2 NPs are excreted via faeces, while the absorbed particles are translocated across the gastrointestinal (GI) tract and enters the bloodstream (Kreyling et al., 2017; Riedle et al., 2020). It has been shown that TiO2 NPs in mice accumulate mostly in the liver, spleen, kidneys, brain and lungs (Kreyling et al., 2017; Martins et al., 2017; Shinohara et al., 2014; Wang et al., 2007). Similarly, study in humans with a single oral dose of E171 demonstrated that >99% ingested particles were secreted in the stool and <1% were absorbed (Jones et al., 2015). Although TiO2 NPs have shown poor absorption, human autopsies have shown that most accumulation occurs in the liver and spleen (Gilbert et al., 2021; Hamilton, 2013; Heringa et al., 2018; Keller et al., 1995; Lima et al., 2004; Peters et al., 2020; Younes et al., 2021) (see Figure 1).

FIGURE 1.

FIGURE 1

Route of entry, absorption, distribution, accumulation and excretion of TiO2 nanoparticles (NPs). TiO2 NPs enter the body through the oral cavity. Food elements and NPs get separated in the stomach and a small percentage of the particles are taken up by Peyer's patches in the small intestine from where they enter the bloodstream. Once distributed to the whole body, these particles accumulate in different organs including liver, brain, spleen and kidneys. However, the undistributed particles are excreted through faeces and urine. Created with BioRender.

TiO2 NPs have been shown to induce toxicity in other organs including the small intestine (Acar et al., 2015; Coccini et al., 2015; Hu et al., 2011; Jia et al., 2017; Jugan et al., 2012; Orazizadeh et al., 2020; Petković et al., 2011; Salman et al., 2021; Valdiglesias et al., 2013), lungs (Fukatsu et al., 2018; Hussain et al., 2010; Koltermann‐Jülly et al., 2020; Li et al., 2010; Moon et al., 2010; Silva et al., 2013; Zhao et al., 2018), heart (Saber et al., 2013; Yu et al., 2014; Zhao et al., 2018), brain (Wu et al., 2008) (Heidari et al., 2019), kidneys (Hazelhoff et al., 2022) and spleen (Afshari‐Kaveh et al., 2021). Several studies have reported the toxicity and adverse mechanisms of TiO2 NPs in the liver via various modes of administration. Recently, an interesting postmortem study has shown the accumulation of TiO2 NPs (24% of total TiO2 particles were less than 100 nm) in the human liver (Heringa et al., 2018). All such results raise concerns about the cytotoxicity and liver impairment by the oral intake of food‐grade TiO2 NPs. This review focusses on the adverse effects after oral administration of TiO2 NPs in the liver or studies demonstrating its effects in liver cells (in vitro). Databases including PubMed, Scopus and Web of Science were used with search terms “titanium dioxide OR titanium dioxide nanoparticle* OR nano titanium OR TiO2 nanomaterial OR TiO2 nanoparticle* OR TiO2 food grade OR E171 AND liver OR hepatocyte* AND adverse effects OR toxicity”. Studies demonstrating other routes of administration like intraperitoneal (IP), intravenous (IV), inhalation or intratracheal instillation (IT) and subcutaneous (SC) administration or focusing other organs like lungs, intestine, kidneys, heart, brain and spleen were excluded. Studies used co‐administration of TiO2 NPs with any other substance/toxin/biomaterial or nanomaterial were also excluded. The flow diagram of the selection process is summarised in Figure 2.

FIGURE 2.

FIGURE 2

Flow chart of study selection process.

7. TIO2 NPs AND LIVER TOXICITY

The liver is the most important organ for the detoxification of toxins and xenobiotics. Regardless of the route of administration, TiO2 NPs accumulate in the liver and can have toxic effects (Cui et al., 2010; Cui et al., 2011; Gilbert et al., 2021; Hassanein & El‐Amir, 2018; Jia et al., 2017; Nie et al., 2021; Shirdare et al., 2022; Suker & Jasim, 2018; Wang et al., 2013). The reported mechanisms by which TiO2 NPs may cause toxicity in the liver include generation of reactive oxygen species (ROS) (Jia et al., 2017; Shrivastava et al., 2014), oxidative stress (Chen et al., 2019; Chen et al., 2020; Wang, 2014), inflammation (Abbasi‐Oshaghi et al., 2019; Hong et al., 2020), ultimately leading to steatosis, histopathological changes (fibrosis and damaged lobular structure) (Azim et al., 2015; Cui et al., 2011; Talamini et al., 2019; Tassinari et al., 2023; Wang et al., 2007; Wang et al., 2013; Zhao et al., 2021), DNA damage, necrosis, apoptosis and cell death (Cui et al., 2010; Jia et al., 2017; Orazizadeh et al., 2020).

This review focusses on studies showing toxicological effects of TiO2 NPs. However, there are some studies that have reported very minor or no effects. These studies are shown in Table 1.

TABLE 1.

Studies reported no or very minor effects of TiO2 NPs on liver (in vivo).

Study model Oral daily dosage (mg/kg/bw) Treatment timeline Type/particle size

General effects

Effects on liver

References

Fischer 344 rats

B6C3F1 mice (M, F)

25, 50 103 weeks Anatase/NM

No change in body weight, but a few female mice died with in high‐dose group

No evidence of toxicity

Non‐significant signs of hepatocellular carcinoma

White faeces in high‐dose group

NCI (1979)
Sprague‐Dawley rats (M, F) 100, 300, 1000, 5000 28 and 90 days Rutile/rutile and anatase (A/R 79%–21%)/145 and 173 nm

No effects on mortality, body weights, organ weights and daily food consumption

No change in neurobehavioral parameters, clinical chemistry, urine analysis or any clinical signs

No gross or microscopic anatomic pathology or lesions

Grey‐coloured faeces in high‐dose group

Warheit et al. (2015)
Sprague‐Dawley rats (M, F) 500, 1000, 2000 Single dose

Anatase/rutile and mix/Uf 1, 2, 3 and Pg 1, 2, 3

Size range: 43, 42, 47, 153, 195, 213 nm

No increase of TiO2 in the blood and liver

No increase in micronuclei and explicitly negative in the in vivo mammalian erythrocyte micronucleus test

Donner et al. (2016)
Wistar rats (M) 0.5 45 days/daily Anatase/41.99 nm

No change in redox parameters

No genotoxic effects

No oxidative stress

TiO2 accumulated in the liver

Martins et al. (2017)
Wistar Han IGS rats (M) 0.32, 32, 5 Daily/7 and 100 days E171

No increase in liver to body weight

No increase in inflammatory cytokines in plasma, colon or small intestine

No histopathological conditions observed in the liver or any other organs

No signs of carcinogenicity

Blevins et al. (2019)
Sprague‐Dawley rats (F) 100, 300, 1000 Daily/14 days A/R 80/20%/21 nm

No mortality and change in body weight. No significant decrease in food consumption. No change in absolute and relative organ weights including liver, gravid uterine weight

No change in caesarean section parameters, foetal weight, placental weight and placental macroscopic observation

Titanium concentrations were elevated in maternal liver, maternal brain and placenta at high dose

Lee et al. (2019)
Sprague‐Dawley rats (M, F) 250, 500, 1000 Daily/28 or 90 days A/R 80%–20%/14–21 nm

No mortality, no gain or loss in body weight and food consumption. No ocular abnormalities or abnormal clinical signs

No real differences in haematological, biochemical or urinalysis parameters

There were no abnormal or gross findings in any of the animals at necropsy including the liver

Heo et al. (2020)
F344 rats (M, F) 10, 100, 300, 1000 Daily/28 or 90 days Anatase/6 nm

No mortality and change body weight or even organ weight

No change in parameters of urinalysis, haematology, serum biochemistry

No genotoxicity (DNA strand breaks and chromosomal aberrations) in the liver

No abnormality of colonic crypts

TiO2 particles accumulated in the liver, kidneys and spleen

Akagi et al. (2023)
Sprague‐Dawley rats (M, F) 10, 100, 1000 Daily/90 days Anatase/40 nm

No mortality or abnormal clinical sign in eyes. No significant change in body weight or food consumption and no systemic toxicity

No changes in parameters of haematology, urinalysis, clinical chemistry

No abnormal gross findings at necropsy and no significant differences in endocrine‐sensitive endpoints except for the absolute pituitary weights

No Ti distribution in major tissues/organs

No impact on microbiota diversity only a shift of community structure at genus level

Lin et al. (2023)

Overall, these studies report that oral administration of TiO2 NPs result in their accumulation in the liver. TiO2 NP accumulation leads to an increase in the levels of oxidative stress and inflammation, biochemical parameters, ultimately leading to histopathological changes, apoptosis, necrosis and decrease of antioxidants in the liver or its cultured cells.

8. BIOCHEMICAL PARAMETERS AND HISTOPATHOLOGICAL CHANGES IN THE LIVER

TiO2 NPs increase the serum levels of liver injury markers including ALT, AST, LDH and ALP (Abbasi‐Oshaghi et al., 2019; Azim et al., 2015; Niu et al., 2017; Sallam, Ahmed, Diab, et al., 2022). These biochemical indicators of injury are echoed by various histopathological liver changes including focal degeneration of hepatocytes, spotty necrosis, hydropic degeneration, liver oedema, congestion, swelling, vacuolisation, nuclear membrane collapse and overall cell death (Ali et al., 2019; Azim et al., 2015; Hassanein & El‐Amir, 2017; Shirdare et al., 2022; Wang et al., 2013). TiO2 NPs cause significant disruption to the liver structure with neutrophilic cell, portal and lobular infiltration by inflammatory cells and congested dilated central veins (Ali et al., 2019). TiO2 NPs also cause necrosis, oedema, Kupffer cell hypertrophy, hydropic degeneration, vacuolisation in hepatocytes and increased infiltration of inflammatory cells (Moradi et al., 2019) (see Tables 1 and 2 for more details). In vitro studies on culture human and rat liver cells have also shown cytotoxic effects of TiO2 NPs (Sha et al., 2011). Similarly, TiO2 NPs induced alterations in cell viability, increased ROS, decreased GSH levels in human hepatocarcinoma cell line (HepG2 cells) and also resulted in distorted cellular morphology in the liver (Abbasi‐Oshaghi et al., 2019). In addition, cell growth inhibition, increased apoptosis, cell cycle arrest at G1 stage and induction of ROS‐mediated ER stress by activating PERK/ATF6/Bax axis were observed in HepG2 cells (Li et al., 2020).

TABLE 2.

Reported effects of TiO2 NPs on liver (in vivo).

Study model Oral daily dosage (mg/kg/bw) Treatment timeline Type/particle size Effects on liver References
CD‐1 mice (M, F) 5000/single dose 1 day NG/25, 80, and 155 nm

↑ALT/AST ratios

HC: Ti accumulation in the liver, hydropic degeneration, spotty necrosis of hepatocytes

Wang et al. (2007)
CD‐1 mice (F) 62.5, 125, 250 30 days Anatase/5 nm

↑ ALT, ALP, AST, LDH, ChE, TP, TG, TCHO, NO

↓ ALB to GLB (A/G), TBIL, IL‐2

HC: Blur hepatocytes, congested interstitial vessels

Duan et al. (2010)
CD‐1 mice (F) 5, 10, 50 60 days Anatase/6–7 nm

↑ H2O2, MDA, NO, O2 ¯, CYP1A

↓ SOD, CAT, GSH‐Px, MT, GST, HSP70, p53, TF genes

HC: Mitochondrial swelling, apoptotic bodies, chromatin condensation

Cui et al. (2010)
CD‐1 mice (F) 5, 10, 50 60 days Anatase/5 nm

↑ ALT, AST, ALP, LDH, PChE, LAP, TLR2, TLR4, IKK1, IKK2, NF‐κB, NF‐κBP52, NF‐κBP65, TNF‐α, NIK

↓ IκB, IL‐2, IgM

HC: TiO2 accumulation in the liver, fatty degenerations with large vacuoles and congestion, necrosis, inflammatory cell infiltration, mitochondria swelling, apoptotic cell with chromatin condensation

Cui et al. (2011)
Sprague‐Dawley rats (M) 10, 50, 200 30 days Anatase/75 nm

↑ Glu, LDL‐C, ALT/AST ratio, BUN, GSH/GSSG

↓ AST, HBDH, CK, TBIL

HC: Liver injury, oedema, hepatic cord disarray, peri‐lobular cell swelling, hydropic degeneration, inflammatory cell infiltration

Wang et al. (2013)
Albino rats (M) 1200 9 months Anatase/25–70 nm

↑ GPT, GOT

↓ MDA, GSH

HC: Necrosis, hydropic degeneration and dead hepatocytes

Attia et al. (2013)
Swiss albino mice (M) 10, 50, 100 14 days Anatase/20–50 nm

↑ ALT/AST ratio, ALT, AST, ALP, MDA, ROS, Hsp60, Hsp70, p53, Bax, caspases 3 and 9

↓ GSH, Bcl‐2

HC: Increased liver weight, accumulation of mononuclear cells near the sinusoidal vesicle, angiectasis

Shukla et al. (2014)
Wistar rats (M) 300 14 days NG/50–100 nm

↑ AST, ALT, ALP, MDA

↓ GPx, SOD

HC: Centrilobular necrosis, congestion, swelling, and vacuolisation, inflammatory cell infiltration, high apoptotic index

Orazizadeh et al. (2014)
CD‐1 mice (M) 2.5, 5, 10 6 months Anatase/5–6 nm

↑ ALT, AST, ALP, LDH, TC, TG, IL‐4, IL‐5, IL‐12, IFN‐γ, GATA3, GATA4, T‐bet, STAt3, STAT6, eotaxin, MCP‐1, MIP‐2 genes

↓ STAT1, TBIL

HC: TiO2 accumulation in the liver, angiectasis, hyperaemia, infiltration of inflammatory cells, macrophage aggregation, hepatic tissue crevice, necrosis, apoptosis, mitochondrial swelling, nuclear membrane collapse and chromatin marginalisation

Hong et al. (2014)
Swiss albino mice (M) 500 21 days Anatase/rutile/50–75 nm

↑ ROS, GSH, TBARS

↓ SOD, CAT, GPX

HC: TiO2 particles entrapping in endosomes and Kupffer cells

Shrivastava et al. (2014)
Sprague‐Dawley rats (M) 10, 50, 200 30 days Anatase/75 nm

↑ T‐SOD, GSH/GSSG ratio, Rb, ALT, AST, ALP, MDA

↓ Mo, co, Mn, P, GPx, SOD

Wang (2014)
Wistar rats (M) 300 14 days NG/˂100 nm HC: Damaged lobular structures, vacuolisation and congestion, inflammatory cell infiltration Khorsandi et al. (2015)
CD‐1 mice (M) 64 28 days Anatase/18 and 120 nm

↑ MDA, TNF‐α, IL‐6

↓ T‐SOD, GSH

No effects on plasma glucose and ROS levels

HC: Fracture in tissue fibres

Gu et al. (2015)
Albino mice (M) 150 14 days Anatase/21 nm

↑ ALT, AST, MDA, TNF‐α, IL‐6, Nrf2, NF‐κB, CD68, Bax, caspase‐3

↓ GSH, Bcl‐2

HC: Focal degeneration, necrosis, DNA damage, inflammatory cell infiltration

Azim et al. (2015)
CD‐1 mice (M) 13, 64, 320 14 weeks Anatase/25 nm

↑ MDA, JNK1, p38 MAPK, TNF‐α, IL‐6, IR, plasma glucose

↓ SOD, GSH

↑ TiO2 accumulation in the liver with increasing dose

Hu et al. (2015)
Albino rats (M) 5000 Every other day for 60 days NG

↑ AST, ALT, LDH, TLR‐2, TLR‐4, NF‐κB/p65, CYP1B1 and CYP2B

HC: Aggregation of macrophages, hepatocytes with large nuclei and intracytoplasmic vacuoles mild congestion of the portal blood vessels, hydrophobic degeneration, and lymphocytic aggregations in portal areas

Moustafa and Hussein (2016)
Sprague‐Dawley rats (M) 150 6 weeks NG/21 nm

↑ AST, ALT, LPO, TNF‐α

↓ GSH, TBARS

HC: Congestion and dilatation, degenerative changes, vacuolar degeneration, necrosis, mononuclear infiltration

Hassanein and El‐Amir (2017)
C57/BL6 mice (M) 250, 500 14 days NG/21 nm

↑ ILIB, TBIL, ALP, TBA, Oapt1, Mrp3, Cyp2b10, 2c37

HC: Number of mitochondria increased and oedema in ER

Yang et al. (2017)
Kun Ming mice (M, F) 2000 7 days Anatase/25 nm

↑ AST, ALT, TBIL, MDA

↓ SOD, GSH‐PX, Nrf2, NQO1, HO‐1, GCLC

HC: Dilatation of sinusoids, deranged and swollen hepatocytes, vacuoles, necrosis

Niu et al. (2017)
ICR mice (M, F) 5, 10, 50 60 days Anatase/10, 60, 90 nm

↑ ALP, ALT, ALB, LAP, PChe, TBIL, TP, O2−, H2O2, NO, MDA, CYP1A

↓ SOD, CAT, MT, GST, HSP70, p53, TF, GSHPx

HC: TiO2 accumulation in the liver, vascular obstruction, dilation, increase basophils, partial ischemia, swelling mitochondria, vacuoles in mitochondria, nucleolus collapse, scattered chromatin, apoptosis

Jia et al. (2017)
Sprague‐Dawley rats (M) 150 28 days Anatase/30–80 nm

↑ ALP, ALT, AST, LPO

↓ CAT, GST

HC: Destructed blood vessels, infiltration of neutrophils and apoptosis, damaged and congested vein, vacuolation, haemorrhage, pyknotic nuclei, dilated sinusoids

Shakeel et al. (2018)
Sprague‐Dawley rats (M) 300 14 days NG

↑ AST, ALT, LPO

↓ TBARS

HC: Congestion of the central veins, dilatation of the hepatic sinusoids, focal haemorrhagic, coagulative necrosis, proliferation of Kupffer cells, lymphocytic aggregations, vacuolar degeneration

Hassanein and El‐Amir (2018)
Albino rats (M) 100 60 days Anatase/10 nm

↑ ALT, AST, ALP, MDA, Bax

↓ GPx, SOD, GSH, Bcl‐2

HC: Hepatic apoptosis, hepatocellular necrosis, steatosis, sinusoidal dilation with leucocytosis, distortion, disorganisation of the hepatic cords

Morgan et al. (2018)
Wistar rats (M) 100, 200 60 days Anatase/40 nm

↑ ALT, AST, ALP, ALB, MDA

↓ SOD, GPx, CAT, GSH

HC: Liver tissue damage, sinusoidal dilation, vacuolisation and leucocyte infiltration

Jafari et al. (2018)
Wistar albino rats (M) 1000 21 days Anatase 60 nm

↑ ALT, TNF‐α, IL‐6, CRP, IgG, NO, VEGF, caspase‐3, LPO

↓ cytochrome‐P450

HC: Severe degeneration, nuclear pyknosis, karyolysis, cytoplasmic vacuolation, increase in collagen, DNA damage

Fadda et al. (2018)
Wistar albino rats (F) 0.5, 5, 50 14 days NG/21 nm

↑ CAT

↓ GST, SOD, GPX

HC: TiO2 accumulation in the liver

Canli et al. (2019)
Sprague‐Dawley rats (M) 2, 10, 50 90 days Anatase/29 nm

↑ TP, ALB, GLB, GSSG, MDA, IL‐1α, IL‐4, TNF‐α

↓ GSH, GSH‐Px, SOD

HC: Fatty degeneration, fat vacuoles, vacuolation of mitochondria, changes hepatic metabolomics, disrupted energy metabolism

Chen et al. (2019)
Wistar rats (M) 10, 50, 100 30 days Rutile/30 nm

↑ ALT, AST, LDH, ALP, MDA, TOS, Bax, p53, NLRP3, caspase 1 and 3, IL‐1β, TNF‐α, iNOS

↓ SOD, GPX, CAT, TAC, Bcl‐2

HC: Liver cell degeneration, necrosis, congestion of the sinusoids, lymphocytic infiltration, deposition of collagen, apoptosis

Abbasi‐Oshaghi et al. (2019)
Wistar rats (M) 300 14 days 80% anatase + 20% rutile/20 nm

↑ ALT, AST, ALP, LDH, MDA, TOS, TNF‐α, NF‐κB

↓ SOD, GPx, CAT, TAC

HC: Dilatation of congested portal vein, hypertrophy of Kupffer cells, hydropic and vacuolar degeneration, oedema and necrosis and inflammatory cell infiltration

Moradi et al. (2019)
Swiss albino mice (M) 50, 250, 500 5 days

NG/

21 and 80 nm

↑ AST, ALT, MDA, NO, CAT

↓ GSH

HC: Chromosomal fragments and dilatations, distorted and loss in lobular architecture, micro regenerating nodules, mild ballooning and infiltration by lymphocytes, mild fibrosis, swelling and degeneration, significant haemorrhage

Ali et al. (2019)
NFR mice (M) 5 21 days Anatase E171/201 nm

↑ accumulation of TiO2 in the liver, TNF‐α, IL‐1β, circulatory cytokines (IL‐6, SDF‐1)

↓ IL‐10

HC: Increased necroinflammatory foci infiltrated with F4/80‐positive cells, macrophage recruitment

Talamini et al. (2019)
CD‐1 mice (M) 50 8 and 26 weeks NG/25 nm

↑ Cyp2b9, Cyp2c70, Cyp4a14, GRP78, CHOP, PERK, p‐eIF2α, GRP78, CHOP, XBP1‐s, ATF6, XBP1‐s/XBP1‐t, Nrf2, Nqo1, (HO‐1), NF‐κB

Activation of MAPK pathways, IR and increase plasma glucose level

Hu et al. (2020)
Mice 2.5, 5, 10 9 months NG

↑ HIF‐1α, Wnt3, Wnt4, NF‐κB, TGF‐β1, TGF‐β1R, Smad‐2, ILK, ECM, calpain 2, α‐SMA, c‐Myc, collagen I, p38 MAPK phosphorylation, GSK‐3β, β‐catenin

↓ cyclin D

HC: Hepatic inflammatory cell infiltration, hepatic fibrosis

Hong et al. (2020)
Sprague‐Dawley rats (M) 2, 10, 50 28 days Anatase/25 nm

↑ MDA, TNF‐α, SOD

HC: Liver is the most sensitive organ to nano‐TiO2‐induced oxidative/antioxidant biomarker changes

Zhou et al. (2020)
Wistar rats (M) 300 14 days NG/50–100 nm

↑ ALT, AST, Bax

↓ Bcl‐2

HC: Apoptosis in all lobules

Orazizadeh et al. (2020)
Sprague‐Dawley rats (M) 2, 10, 50 90 days Anatase/29 nm

↑ GSSG, MDA

↓ GSH, GSH/GSSG, SOD, hepatic phosphatidylcholine (PC)

HC: High oxidative stress, fatty degeneration of hepatocytes, altered lipid metabolism

Chen et al. (2020)
Albino rats (M) 500 14 days NG/63–142 nm

↑ ALT, ALP, MDA, TLR‐4, NF‐κB, NIK, TNF‐α

↓ GSH, CAT, acetylcholinesterase

HC: Congested and dilated central vein, vacuolated and degenerated hepatocytes with Kupffer cells, leucocytes infiltration, endothelial hyperplasia, leucocytic aggregates

Mohammed and Safwat (2020)
Sprague‐Dawley rats (F) 50 21 days NG/100 nm

↑ ALT, AST, T.BIL, D.BIL, creatinine, urea, uric acid, Cho, TG, LDL‐Cho, MDA, NO, Bax, TNF‐α

↓ TP, Alb, HDL‐Cho, CAT, SOD, GPx, Bcl‐2

HC: Portal vein dilatation, congestion, periportal necrosis, proliferative bile ducts, aggregation of mononuclear cellular infiltration and fibrous tissues

Abdel‐Wahhab et al. (2021)
Kunming mice (M) 2, 20 8 weeks Anatase/10–25 nm

↑ ALP, TNF‐α, IL‐1β, IL‐6, TLR‐4, caspases 3 and 9, VEGFA, TGF‐β, IFN‐γ, MDA

↓ SOD, CAT, GSH

HC: Hepatocyte swelling, fat accumulation, inflammatory infiltration

Zhao et al. (2021)
Sprague‐Dawley rats (F) 150 7 days NG/33 nm

↑ AST, ALT, AST/ALT, ALP

↓ SOD1, SOD2, HO‐1, GSH, CAT, GCLC, GCLM

HC: Ti accumulation in the liver, disordered arrangement of hepatocytes, ballooning degeneration

Nie et al. (2021)
Wistar rats (M) 100 30 days NG/21 nm

↑ LDH, ALT, AST, TC, TG, LDL, VLDL, plasma glucose

↓ HDL

HC: Congestion and dilatation in the central vein

Bakour et al. (2021)
Balb/c mice (M) 25 21 days NG/28.9 nm

↑ ALT, AST, TC, TG, LDL, MDA, NO, AFP, TNF‐α, CEA

↓ CAT, SOD, TP, Alb, TAC, HDL

HC: DNA fragmentation, hepatocytes necrosis, dilated and congested blood vessels, fatty droplets

Salman et al. (2021)
Sprague‐Dawley rats (M) 50 21 days NG/28 nm

↑ AST, ALT, MDA, NO, TG, Chol, LDL, Bax, caspase 3, p53

↓ HDL, GPx, CAT, Bcl‐2

HC: Portal tract dilation, proliferation of bile ducts, necrosis in their epithelial cells, fibrosis, DNA fragmentation in hepatic tissue

Sallam, Ahmed, El‐Nekeety, et al. (2022)
Wistar rats (M) 300 21 days Anatase (80%), rutile (20%)/20 nm

↑ ALT, AST, ALP, LDH, TOS, MDA

↓ TAC, SOD, GPx

HC: WBCs infiltration, central vein hyperaemia, enlargement of Kupffer cells, dilation of sinusoids, inflammatory cells accumulation, hepatocyte necrosis

Shirdare et al. (2022)
Sprague‐Dawley rats (M) 50 21 days NG/50 nm

↑ AST, ALT, T.BIL, D.BIL, Cho, TG, LDL‐Cho, AFP, CEA, NO, MDA, IL‐1β, IL‐6, TNF‐α

↓ Alb, TP, HDL‐Cho, CAT, GPx, SOD, IL‐10

HC: Dilatation in the central vein and hepatic sinusoid, vacuolar degeneration, nuclear degeneration, necrosis, pyknosis, karyolysis, peripheral chromatin clumps, fibrosis, proliferation of bile ducts

Sallam, Ahmed, Diab, et al. (2022)
Sprague‐Dawley rats (M) 2, 10, 50 90 days Anatase/29 nm

↑ MDA, imbalance in the liver metabolites, effects on glycerophospholipid metabolism pathway, effect on the liver metabolism

↓ differentially expressed phosphatidylcholine (PCs)

Chen et al. (2022)
Wistar rats (M) 100 28 days NG

↑ AST, ALT, ALP, TC, TG, MDA, IL‐1β, IL‐6, TNF‐α, IFN‐γ, γH2A, Bax, α‐SMA, fibronectin

↓CAT, GPx, SOD, GSH, IL‐10, Bcl‐2, PI3K/AKT signalling pathway

HC: Hepatic fibrosis, inflammatory cell infiltration, hepatic sinusoid congestion, widening liver tissue gap and lamellar tissue necrosis

Zhang et al. (2023)
ICR mice (M) 50 30 days Anatase/7 nm

↑ AST, ALT, ALP, MDA, Bax, caspase‐3 & 9, p53, p‐p38, p‐p38/p38

↓ SOD, GSH‐Px, GSH, T‐AOC, Bcl‐2

HC: Hepatocytes were blurred and disordered, swollen and vacuolated, increased apoptosis, steatosis, congestion and dilation of the central veins and infiltration of inflammatory cells around the blood vessels

Chang et al. (2023)
Wistar rats (M) 20 14 days Anatase/25 and 150 nm

↑ IL‐1β

↓ IL‐6 and IFN‐γ

HC: Increase in liver weight, dilated hepatic vein, loss of native morphology of hepatic lobule and portal triad, structural deformities in RBCs found in liver

Ali et al. (2023)
Sprague‐Dawley (M, F) 1, 2 5 days Anatase/<25 nm

↑ genes like NPY and SPP1 (male rats only)

AST and ALT (no effect)

HC: Increase in intralobular lymphoid infiltration, focal intralobular necrosis in the middle zone of the liver lobule, hepatocyte vacuolisation/steatosis, congestion in the central vein with enlargement of the sinusoids

Tassinari et al. (2023)
Wistar rats (M) 100 28 NG

↑ AST, ALT, ALP, TC, TG, MDA, IL‐6, TNF‐α, IFN‐γ, IL‐1β, TNF‐α, γH2A, Bax, α‐SMA, fibronectin

↓ SOD, GPx, GSH, CAT, IL‐10, Bcl‐2

HC: Hepatic fibrosis, hepatic sinusoid congestion, widening liver tissue gap, inflammatory cell infiltration, lamellar tissue necrosis, and impairment of the PI3K/AKT signalling pathway

Zhang et al. (2023)
Sprague‐Dawley rats (M) 250 28 Anatase/15 nm

↑ TOS, MDA

↓TAS, CAT

HC: Mononuclear cell infiltration, hyperaemia, glycogen accumulation, fibrosis proliferation, hepatocellular hypertrophy

Ogut et al. (2024)
Albino rats (M) 500 60 Anatase/72.1 nm CYP1A1 and NBN Moselhy et al. (2024)
Swiss Webster mice (M) 50 5 Anatase and rutile mixture/NG

↑ damage to genomic DNA, p53, MDA

↓ SOD, Gpx

HC: Diffusion and degeneration of hepatocytes.

Mohamed et al. (2024)
C57BL/6 mice (F) 10 28 NG/25–70 nm

↑ body weight, liver weigh, Ti content in liver, AST, ALT, AKP, MDA, keap‐1

↓ GSH, CAT, SOD, Nrf2, Gclc, Gclm

Jia et al. (2024)

9. OXIDATIVE, MITOCHONDRIAL AND ER STRESS IN THE LIVER

TiO2 NP toxicity induces oxidative stress, increases in ROS formation and promotes inflammation (Foroozandeh & Aziz, 2015; Liguori et al., 2018). ROS generation results in the disruption of macromolecules (lipids, DNA, carbohydrates and proteins) (Abdel‐Wahhab et al., 2021; Shukla et al., 2014). Lipid peroxidation causes structural changes in the cell membrane and disturbs the overall functions of the cell. Due to lipid disturbances, free radicals (hydroxyl radicals) are generated that cause oxidative damage by increasing the levels of MDA and NO and decreasing hepatic antioxidant enzymes (GSH, CAT, SOD, GPx) (Chen et al., 2020). TiO2 NPs increase levels of oxidative stress and MDA and a decrease in the expression of antioxidant genes (SOD, CAT, GSH) (Jafari et al., 2018). Oral ingestion of TiO2 NPs in rats induces oxidative stress and causes a slight elemental imbalance in the liver (Chen et al., 2020).

Mitochondria are one of the main organelles targeted by TiO2 NPs where they cause alterations in mitochondrial membrane proteins, mitochondrial dynamics and morphology (Hirakawa et al., 2004). TiO2 NPs cause morphological alterations by damaging mitochondrial membranes, swelling and ballooning of mitochondria and overall decrease the activity of mitochondria in hepatic cells (Chen et al., 2019; Jia et al., 2017; Teubl et al., 2015; Yang et al., 2017). TiO2 NPs alter the activity of electron transport chain components, including mitochondrial complex I (nicotinamide adenine dinucleotide [NADH] dehydrogenase) and complex II (succinate dehydrogenase). Alterations in these enzymes result in defective oxidative metabolism that can lead to mitochondrial cytopathy. Also, changes in these complexes may result in an aberrant mitochondrial permeability transition pore, further causing uncoupling of oxidative phosphorylation and depletion of ATP (Mehndiratta et al., 2002). Waseem et al. (2022) have shown that TiO2 NPs drop the activity of mitochondrial complex I and complex II mitochondrial dehydrogenase (complex III) in the rat liver. Also, TiO2 NPs aggravated membrane peroxidation, decreased the activity of Mn‐SOD (which is the first line of defence against the toxic oxyradicals), reduced the levels of GSH (crucial for maintaining mitochondrial functionality) and reduced mitochondrial GST (responsible for inactivating the cytotoxic effects of oxidative stress).

The endoplasmic reticulum (ER) controls the accurate folding of proteins. Accumulation of misfolded proteins in the ER causes ER stress, which activates an unfolded protein response (UPR). The UPR either maintains homeostasis or triggers cell death to inhibit accumulation of damaged cells (Cao et al., 2017). The UPR has three signal transducers: protein kinase RNA‐like ER kinase (PERK); inositol‐requiring enzyme 1 alpha/beta (IRE1α/β); and activating transcription factor 6 (ATF6). During ER stress, PERK (ER‐resident protein) mediates signal transduction and, together with ATF6 and IRE1, triggers either ROS‐ER stress‐mediated apoptosis or autophagy (Li et al., 2022; Liu et al., 2015). Nanoparticle‐induced ER stress is one of the early biomarkers for the evaluation of nanotoxicity. TiO2 NPs increase the expression of PERK, Bax and ATF6 in HepG2 cell lines. TiO2 NPs induce ER stress that activates PERK/ATF6 signalling pathways contributing to the TiO2‐mediated apoptosis of the liver cancer cells (Li et al., 2020). The PERK–eIF2α–ATF4 pathway up‐regulates the UPR target genes and induces the folding and excretion of proapoptotic protein C/EBP homologous protein (CHOP), which regulates both lipogenesis and hepatic steatosis (Hernández‐Gea et al., 2013). Thus, TiO2 NPs can induce ER stress in the liver cells; however, further studies are needed to elucidate the role of TiO2 NPs in mediating ER stress, apoptosis and autophagy in the liver cells.

10. INFLAMMATION, APOPTOSIS AND NECROSIS IN THE LIVER

Oral administration of TiO2 NPs causes chromatin condensation, nuclear fragmentation and apoptosis in hepatocytes (Cui et al., 2010; Zhu et al., 2012). TiO2 NPs increase the expression of pro‐apoptotic genes like p53, Bax, Cyto‐c, Apaf‐1, caspase‐9 and caspase‐3, and reduce the expression of anti‐apoptotic genes like Bcl‐2, indicating that TiO2 NPs mediate apoptosis via the caspase‐dependent signalling pathway. This pathway has been demonstrated in vitro in HepG2 cells (Shukla et al., 2013), while in vivo it was confirmed in the liver of rats using the TUNEL assay (Abbasi‐Oshaghi et al., 2019). Similar studies using immunoblot analysis also revealed that TiO2 NPs activate the intrinsic pathway of apoptosis by increasing the expression of pro‐apoptotic proteins and decreasing the levels of anti‐apoptotic protein (Sallam, Ahmed, Diab, et al., 2022; Sallam, Ahmed, El‐Nekeety, et al., 2022; Shukla et al., 2014). TEM studies have shown that TiO2 NPs cause the breakdown of nucleolus, dispersed chromatin, apoptosis and apoptotic cell bodies in the liver cells of mice (Jia et al., 2017). This shows that TiO2 NPs induce liver apoptosis as well as structural damage in the liver.

Another study reported that TiO2 NPs increase pro‐apoptotic factors (Bax, caspase‐3 and p53) and decrease anti‐apoptotic factor (Bcl‐2) in the rat liver (Abbasi‐Oshaghi et al., 2019). The caspases and Bcl‐2 proteins are the main regulators of the apoptotic pathway. Translocation of Bax into mitochondria alters the permeability of cytochrome C and further stimulates post‐mitochondrial caspases that lead to apoptotic cell death (Jin et al., 2017; Wang, 2014). Necrosis is one of the primary features of liver injury and up‐regulates the expression of apoptotic genes (p53, p38, TNF‐α, caspase‐3, caspase‐8, caspase‐9). This suggests the role of TiO2 NPs in causing cell necrosis through ROS (Abbasi‐Oshaghi et al., 2019; Moradi et al., 2019; Morgan et al., 2018; Sallam, Ahmed, Diab, et al., 2022).

TiO2 NPs activate MAPK and nuclear factor kappa B (NF‐κB) inflammatory signalling cascades, leading to transient liver inflammation due to increased levels of pro‐inflammatory cytokine tumour necrosis factor α (TNF‐α) and decreased expression of NF‐κB inhibitor A20 (anti‐inflammatory gene) and decreased cell viability (Chen et al., 2016). In addition, oral administration of TiO2 NPs causes infiltration of white blood cells, inflammation with infiltration of white blood cells, Kupffer cell enlargement, sinusoidal dilation with the accumulation of inflammatory cells and hepatocyte necrosis (Shirdare et al., 2022). Abbasi‐Oshaghi et al. (2019) have reported that TiO2 NPs induce inflammatory responses by increasing the expression of TNF‐α (a pro‐inflammatory cytokine) and iNOS (major source of reactive nitrogen species) levels dose‐dependently in the liver. Zhao et al. (2021) have shown that high dose oral intake of TiO2 NPs causes severe oxidative stress, serious hepatic inflammation, fibrosis and apoptosis in the liver of mice, and these effects were exacerbated with fructose‐induced metabolic syndrome. These results suggest that some populations, such as those with metabolic syndrome, may be more at risk of adverse health outcomes associated with TiO2 NPs.

Overall, these studies suggest that TiO2 NPs induce necrosis, apoptosis, inflammation and other liver impairments via ROS generation, DNA damage, ER stress and mitochondrial stress (Mohammadinejad et al., 2019). The molecular mechanisms by which TiO2 NPs induce apoptosis, necrosis and inflammation have been summarised in Figures 3 and 4. However, the role of TiO2 NPs in molecular signalling pathways towards autophagy in the liver cells remains elusive.

FIGURE 3.

FIGURE 3

Mechanisms of hepatotoxicity induced by TiO2 nanoparticles (NPs). TiO2 NPs activate Toll‐like receptors (TLRs) and enhance NF‐κB‐inducible kinase (NIK), leading to nuclear factor‐kappa B (NF‐κB) response to cause cellular inflammation. TiO2 NPs induce oxidative stress, generate ROS species and increase the expression of stress protein Hsp (heat shock protein) and activate MAPK (mitogen‐activated protein kinases) signalling pathway. TiO2 NPs increase the expression of p53 that is involved in increasing the expression of Bax and Bcl2 subsequently increasing the expression of caspases 3 and 9, resulting in apoptosis. TiO2 NPs also induce mitochondrial and ER stress mediated by apoptotic protease activating factor 1 (APAF1) and caspases (caspases 12, 6 and 7). Created with BioRender.

FIGURE 4.

FIGURE 4

TiO2 NP‐induced oxidative stress triggers inflammation. TiO2 NPs induce oxidative stress and cause hepatic inflammation by changing the histopathology of the liver, generation of protein adducts, lipid peroxidation, necrosis, hepatocyte death, mitochondrial dysfunction and DNA damage. Created with BioRender.

11. GENOTOXICITY IN THE LIVER

Genotoxicity is defined as the ability of biological or chemical agents (harmful substances) to damage the genetic information in the cells (directly or indirectly) triggering genomic instability and mutations that may cause various diseases including cancer (Phillips & Arlt, 2009). Oral exposure to TiO2 NPs causes DNA damage, increases the expression of pro‐apoptotic proteins (Bax) and p53 and decreases the expression of anti‐apoptotic proteins (Bcl‐2), further leading to apoptosis and distorted liver function (Abdel‐Wahhab et al., 2021; Orazizadeh et al., 2020; Sallam, Ahmed, El‐Nekeety, et al., 2022; Shukla et al., 2014). In addition, TiO2 NPs also induced chromosome breaks and polyploidy. In vivo studies have confirmed that TiO2 NPs cause chromosomal aberrations and DNA breaks and can induce genotoxicity in the liver, spleen and thymus cells (Ali et al., 2019; Chakrabarti et al., 2019; Manivannan et al., 2020). For more details on TiO2 NP‐induced genotoxicity, see Wani and Shadab (2020).

12. CHALLENGES AND PERSPECTIVES

E171 is a widely used additive in food and pharmaceutical formulations. Recently, the usage of E171 in food and pharmaceutical products was banned in the EU due to its potentially genotoxic effects (Younes et al., 2021). Subsequently, the use of E171 in food was banned in several other countries, including Jordan, Saudi Arabia, Yemen, Qatar, Turkey and Israel. However, other countries including the United States, the United Kingdom, Canada, Japan, Australia and New Zealand are still using E171, as the Food and Drug Administration (FDA), the UK Food Standards Agency (FSA), Health Canada, Japanese National Institute of Health Sciences (NIHS) and Food Standards Australia New Zealand (FSANZ) determined that there is no conclusive scientific evidence that E171 is harmful to human health (FSANZ, 2022; TDMA, 2023). The different regulatory responses to the same evidence are presumably due to different risk tolerance thresholds. For example, France took precautionary regulatory action and banned the usage of E171 in 2019, because the risk to public health could not be conclusively ruled out. Later, following a similar approach, the use of E171 as a food additive was banned in the EU. The EFSA concluded that risk associated with E171, primarily genotoxicity, could not be ruled out. In contrast, other countries have not implemented any restrictions or bans because their regulatory agencies require more conclusive evidence of risk to human health before adding restrictions to products already in use.

Orally consumed TiO2 NPs are mostly excreted but some get absorbed via the small intestine and accumulate in various organs including liver, which is the primary detoxification system of the body (Gilbert et al., 2021; Hamilton, 2013; Heringa et al., 2018; Keller et al., 1995; Lima et al., 2004). Considering the potential effects of TiO2 NPs on human liver health, all relevant literature (to date) reporting toxicity of TiO2 NPs in the liver after oral administration in rodents and humans or in cultured liver cells has been summarised in this review. Briefly, most studies have shown that TiO2 NPs can cause liver toxicity by various mechanisms including increasing oxidative stress, disturbing the antioxidant system, inflammation, apoptosis, necrosis and changing the expression levels of protective genes (Chen et al., 2020; Nie et al., 2021; Sallam, Ahmed, El‐Nekeety, et al., 2022).

Similarly, orally administered TiO2 NPs can induce toxicity in the liver of rodents from low doses, which are more relevant to daily human exposure, that is, 2–10 mg/kg/bw. Other studies have shown liver toxicity using doses well above normal human intakes, with doses as high as 50–2000 mg/kg/bw. In addition to dose ranges, a variety of particle sizes from 5 to 200 nm or even bulk particles can induce toxicity in the liver. These studies have also demonstrated that higher doses and smaller particle size are capable of causing more hepatotoxicity in rodents. Adverse effects have been reported following exposure to TiO2 NPs in acute treatments for as low as 5 days and in chronic treatments for up to 9 months. The use of both crystalline forms of TiO2, that is, anatase or rutile separately or a mixture of both, can elicit adverse effects on the liver (for details, see Tables 2 and 3).

TABLE 3.

Effects of TiO2 NPs on liver cells (in vitro).

Cell type Dosage (μg/ml) Treatment timeline (h) Type/size Effects on liver cells References
HepG2 1, 10, 100, 250 4, 24, 48

Anatase/<25 nm

Rutile/<100 nm

Anatase: 2‐fold increase in ROS

Persistent DNA stranded breaks

↑ Fpg‐sensitive sites, p53, mdm2, p21, gadd45α

Rutile: 1.4‐fold increase in ROS, DNA‐stranded breaks but not persistent

↑ Fpg‐sensitive sites, p53, mdm2, p21, gadd45α

Petković et al. (2011)

SMMC‐7721

HL‐7702

0.1, 0.5, 1, 5, 10, 50, 100 12, 36, 24, 48 NG/3.7 nm

↑ cell shrinkage, nuclear condensation, ROS, cytotoxicity

↓ GSH

Sha et al. (2011)
C3A 0.5–256 4, 6, 24 Rutile/7 and 10 nm

↑ DNA damage, ROS, oxidative stress, genotoxicity, IL8

↓ GSH

(Kermanizadeh et al., 2012)
HepG2 1, 10, 20, 40, 80 6, 24, 48 Anatase/30–70 nm

↑ cellular uptake, cytotoxicity, oxidative DNA damage, apoptosis, micro nucleated cells, ROS, Hsp60, Hsp70, p53, Bax, Cyto‐c, Apaf‐1, caspases 3 and 9, hydroperoxide

↓ MSD, GSH, MMP, Bcl‐2

Shukla et al. (2013)
HepG2 100 24

Anatase 86%

Rutile 14%/sP25 (21 nm)

↑ DNA damage, MN frequencies, NF‐κB activity

No significant transcriptional activation of AP1

Prasad et al. (2014)
C3A 10–100 4 Rutile/30.5 nm

↑ ROS

Limited effect on glycogen breakdown, glucose, LP release and metabolism

Filippi et al. (2015)
HepG2 5, 20, 80, 160, 320 1, 9, 12, 16, 24

Anatase/10 nm

Rutile/50 nm

↑ cytotoxicity, immunogenicity, TNF‐α, MAPK, NF‐κB pathway, p38, ERK1/2 phosphorylation, inflammation, Young's modulus, and adhesion force.↓ A20 Chen et al. (2016)
QGY 40, 80 72 NG/21 nm

↑ H2O2, chromosome instability, ROS

↑ telomere length, TRF1, TRF2, POT1, Nrf‐2

Wang et al. (2018)
HepG2 2.5, 5, 7.5, 10 12, 24, 48 Anatase/10 nm

↑ G1 phase, caspases 3 and 7, apoptosis, VDAC1, Cyt c, αENaC, SIRT3, ADP/ATP, depolarisation and disruption of mitochondria

↓ cell growth and proliferation, S phase, ACSS1, ATP

Xia et al. (2018)
HepG2 100, 150, 200, 300 24 Rutile/30 nm

↑ LDH, AST, ALT, ROS, apoptosis

↓ cell viability, GSH

Abbasi‐Oshaghi et al. (2019)
HepG2 100 24, 72 P25/21 nm

↑ promoter methylation in CDKN1A, DNAJC15, GADD45A, GDF15, INSIG1, SCARA3, TP53, BNIP3

↓ global methylation, DNMT3a, DNMT3b, MBD2, UHRF‐1

Pogribna et al. (2020)
HepG2 10, 50, 100, 200 3, 24 Anatase (80%), rutile (20%)/25 nm

↑ NP uptake

No micronuclei expression

Brandão et al. (2020)
HepG2 2.5, 5, 7.5, 10 48 NG

↑ apoptosis, cell cycle arrest at G1 stage, ROS, ER stress, PERK, ATF6, Bax

↓ cell growth

Li et al. (2020)
HepG2 4, 8, 12, 50 24

NG/21 nm

NG/125 nm

↑ cytotoxicity, oxidative stress, TiO2 uptake

↓ fatty acid oxidation

Zhang et al. (2021)
HepG2 1.56, 3.13, 6.25, 12.5, 25, 50, 100, 200 48 Anatase/25 nm

↑ cytotoxicity, epigenetic changes

↓ HADHB, BRIP1, ZNF562

Shi et al. (2023)

In contrast, there are many studies that have reported very minor or no toxic effects of TiO2 NPs in rodents (Akagi et al., 2023; Blevins et al., 2019; Han et al., 2021; Heo et al., 2020; Lin et al., 2023; Younes et al., 2021) (for details see Table 1). Research supporting the safety of TiO2 raises some shortcomings in evidence suggesting adverse effects of TiO2 NP administration. For example, the level or extent of toxicity of TiO2 NPs is highly dependent on particle characterisation (size, form, purity, surface charge, particle distribution and stability in the experimental medium) and other factors including duration of exposure, its dose range, dosage relevancy to human, type of experimental model and sample size (Ali et al., 2019; Kassama & Liu, 2017; Violatto et al., 2023). Firstly, in terms of dose, most animal experiments have used doses higher than those encountered in typical human exposure scenarios to observe potential effects of TiO2 NPs more quickly. Some studies have used doses of up to 2000–5000 mg/kg/bw, which are several orders of magnitude higher than the average daily intake in humans, and therefore, care must be taken in the extrapolation of these results to humans. Conversely, some studies have also shown adverse effects in the dose range of 1–5 mg/kg body weight, which is within the range of normal human exposure (0.2–3 mg/kg/bw) (Bischoff et al., 2021). This use of high dose range may not intend to represent realistic human exposure levels but rather to provide a safety buffer in risk assessments.

There is a difficulty in modelling human TiO2 consumption in animal studies. Studies in rats and mice most commonly deliver TiO2 in a daily bolus dose via oral gavage. In contrast, human consumption of TiO2 NPs occurs over time and is typically spread out across multiple meals and snacks, as individuals ingest products containing TiO2 NPs as part of their daily diet. Delivery of substances via gavage is known to effect the absorption, bioavailability and metabolism compared to other oral routes (Mohammadparast & Mallard, 2023). Furthermore, the use of gavage can induce stress responses, which may alter the effect of a given chemical (Vandenberg et al., 2014). This difference in exposure patterns between animal models and humans should be considered when interpreting study results and extrapolating findings to human risk assessments. Although it is hard to achieve human eating pattern in rodents yet, instead of a single bolus, TiO2 NPs can be administered in food to mimic human consumption pattern.

All other factors like study designs, type (nano or bulk particles) and crystalline form of TiO2 NPs, exposure duration, methods of administration and endpoints assessed can impact the consistency and reproducibility of results. For instance, as discussed earlier, TiO2 NPs can be in rutile or anatase or in a mixture form (% proportion variability) and may have diverse surface coatings and can significantly influence their biological interactions and toxicity. Standardisation can be achieved by using only food‐grade E171, removing variation in crystalline form and mixture composition. Similarly, duration of exposure time should be maximised, alongside preference needs to be given to oral administration of TiO2 NPs rather than other administration routes. Studies have assessed different toxicity endpoints, such as inflammation, oxidative stress, histopathological changes or alterations in enzyme activity, and hence, the choice of endpoints can contribute to variability in reported outcomes. It is important to consider the totality of evidence and recognise that the effects of TiO2 NPs may depend on specific conditions and contexts.

Epidemiological studies are needed to investigate potential associations between exposure to TiO2 NPs and adverse health effects in human populations. Long‐term observational studies can provide valuable insights into chronic effects on liver and help establish causation. Furthermore, dietary intervention studies in murine models (metabolic associated disease models) based on estimated human intake levels of titanium could clarify the potential risk of E171 in liver health and metabolic disorders. In vivo studies with wider dose ranges via oral administration from different suppliers of E171 (characterising the physicochemical properties of E171 obtained from local and international vendors) to understand variability of effects can be helpful. While standardising the variables of experimental protocols (such as species, dose, duration of experiment and route of exposure), as may occur for regulatory requirements, may lessen the degree of variability we have noted, these studies are prohibitively expensive. In the absence of this standardisation, we must continue to be cautious with the extrapolation of the results of animal studies to understand the risks of TiO2 NPs to human liver health. Addressing these challenges requires a collaborative effort within the scientific community. Some of the challenges discussed could be addressed through data sharing and the use of systematic reviews and meta‐analyses. Systematic reviews and meta‐analyses that aggregate data from multiple studies can help provide a more comprehensive understanding of the potential risks associated with TiO2 NPs and their impact on liver health. In conclusion, further research is needed to enhance our understanding of the potential risks associated with TiO2 NPs and to develop guidelines for their safe use in various applications.

CRediT STATEMENT

Jangrez Khan: Conceptualisation; investigation; visualisation; methodology; writing original draft. Nick Kim: Supervision; review and editing. Collette Bromhead: Supervision; review and editing; resources. Penelope Truman: Supervision; review and editing. Marlena Kruger: Supervision; review and editing. Beth Mallard: Supervision; conceptualisation; visualisation; writing—review and editing.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGEMENTS

This research did not receive any specific grant from funding agencies in the public, commercial or not‐for‐profit sectors. Open access publishing facilitated by Massey University, as part of the Wiley–Massey University agreement via the Council of Australian University Librarians. Open access publishing facilitated by Massey University, as part of the Wiley ‐ Massey University agreement via the Council of Australian University Librarians.

Khan, J. , Kim, N. D. , Bromhead, C. , Truman, P. , Kruger, M. C. , & Mallard, B. L. (2025). Hepatotoxicity of titanium dioxide nanoparticles. Journal of Applied Toxicology, 45(1), 23–46. 10.1002/jat.4626

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

  1. Abbasi‐Oshaghi, E. , Mirzaei, F. , & Pourjafar, M. (2019). NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: In vivo and in vitro study. International Journal of Nanomedicine, 14, 1919–1936. 10.2147/IJN.S192382 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abdel‐Wahhab, M. A. , El‐Nekeety, A. A. , Mohammed, H. E. , El‐Messery, T. M. , Roby, M. H. , Abdel‐Aziem, S. H. , & Hassan, N. S. (2021). Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon, 7(11), e08456. 10.1016/j.heliyon.2021.e08456 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Acar, M. , Bulut, Z. , Ateş, A. , Nami, B. , Koçak, N. , & Yıldız, B. (2015). Titanium dioxide nanoparticles induce cytotoxicity and reduce mitotic index in human amniotic fluid‐derived cells. Human & Experimental Toxicology, 34(1), 74–82. 10.1177/0960327114530742 [DOI] [PubMed] [Google Scholar]
  4. Afshari‐Kaveh, M. , Abbasalipourkabir, R. , Nourian, A. , & Ziamajidi, N. (2021). The protective effects of vitamins A and E on titanium dioxide nanoparticles (nTiO2)‐induced oxidative stress in the spleen tissues of male Wistar rats. Biological Trace Element Research, 199(10), 3677–3687. 10.1007/s12011-020-02487-z [DOI] [PubMed] [Google Scholar]
  5. Akagi, J. I. , Mizuta, Y. , Akane, H. , Toyoda, T. , & Ogawa, K. (2023). Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats. Particle and Fibre Toxicology, 20(1), 23. 10.1186/s12989-023-00533-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ali, K. , Zaidi, S. , Khan, A. A. , & Khan, A. U. (2023). Orally fed EGCG coronate food released TiO2 and enhanced penetrability into body organs via gut. Biomaterials Advances, 144, 213205. 10.1016/j.bioadv.2022.213205 [DOI] [PubMed] [Google Scholar]
  7. Ali, S. A. , Rizk, M. Z. , Hamed, M. A. , Aboul‐Ela, E. I. , El‐Rigal, N. S. , Aly, H. F. , & Abdel‐Hamid, A. Z. (2019). Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: Effect of dose and particle size. Biomarkers, 24(5), 492–498. 10.1080/1354750x.2019.1620336 [DOI] [PubMed] [Google Scholar]
  8. Attia, H. F. , Soliman, M. M. , Abdel‐Rahman, G. H. , Nassan, M. A. , Ismail, S. A. , Farouk, M. , & Solcan, C. (2013). Hepatoprotective effect of N‐acetylcystiene on the toxic hazards of titanium dioxide nanoparticles. American Journal of Pharmacology and Toxicology, 8(4), 141–147. 10.3844/ajptsp.2013.141.147 [DOI] [Google Scholar]
  9. Azim, S. A. A. , Darwish, H. A. , Rizk, M. Z. , Ali, S. A. , & Kadry, M. O. (2015). Amelioration of titanium dioxide nanoparticles‐induced liver injury in mice: Possible role of some antioxidants. Experimental and Toxicologic Pathology, 67(4), 305–314. 10.1016/j.etp.2015.02.001 [DOI] [PubMed] [Google Scholar]
  10. Bachler, G. , von Goetz, N. , & Hungerbuhler, K. (2015). Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology, 9(3), 373–380. 10.3109/17435390.2014.940404 [DOI] [PubMed] [Google Scholar]
  11. Bakour, M. , Hammas, N. , Laaroussi, H. , Ousaaid, D. , Fatemi, H. E. , Aboulghazi, A. , Soulo, N. , & Lyoussi, B. (2021). Moroccan bee bread improves biochemical and histological changes of the brain, liver, and kidneys induced by titanium dioxide nanoparticles. BioMed Research International, 2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Baranowska‐Wójcik, E. , Szwajgier, D. , & Winiarska‐Mieczan, A. (2022). A review of research on the impact of E171/TiO(2) NPs on the digestive tract. Journal of Trace Elements in Medicine and Biology, 72, 126988. 10.1016/j.jtemb.2022.126988 [DOI] [PubMed] [Google Scholar]
  13. Bischoff, N. S. , de Kok, T. M. , Sijm, D. , van Breda, S. G. , Briede, J. J. , Castenmiller, J. J. M. , Opperhuizen, A. , Chirino, Y. I. , Dirven, H. , Gott, D. , Houdeau, E. , Oomen, A. G. , Poulsen, M. , Rogler, G. , & van Loveren, H. (2021). Possible adverse effects of food additive E171 (titanium dioxide) related to particle specific human toxicity, including the immune system. International Journal of Molecular Sciences, 22(1), 207. 10.3390/ijms22010207 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Blevins, L. K. , Crawford, R. B. , Bach, A. , Rizzo, M. D. , Zhou, J. , Henriquez, J. E. , Khan, D. , Sermet, S. , Arnold, L. L. , Pennington, K. L. , Souza, N. P. , Cohen, S. M. , & Kaminski, N. E. (2019). Evaluation of immunologic and intestinal effects in rats administered an E 171‐containing diet, a food grade titanium dioxide (TiO(2)). Food and Chemical Toxicology, 133, 110793. 10.1016/j.fct.2019.110793 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Boutillier, S. , Fourmentin, S. , & Laperche, B. (2021). History of titanium dioxide regulation as a food additive: A review. Environmental Chemistry Letters, 1–17.33192208 [Google Scholar]
  16. Brandão, F. , Fernández‐Bertólez, N. , Rosário, F. , Bessa, M. J. , Fraga, S. , Pásaro, E. , Teixeira, J. P. , Laffon, B. , Valdiglesias, V. , & Costa, C. (2020). Genotoxicity of TiO2 nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH‐SY5Y). Nanomaterials, 10(3), 412. 10.3390/nano10030412 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Buettner, K. M. , & Valentine, A. M. (2012). Bioinorganic chemistry of titanium. Chemical Reviews, 112(3), 1863–1881. 10.1021/cr1002886 [DOI] [PubMed] [Google Scholar]
  18. Canli, E. G. , Ila, H. B. , & Canli, M. (2019). Response of the antioxidant enzymes of rats following oral administration of metal‐oxide nanoparticles (Al2O3, CuO, TiO2). Environmental Science and Pollution Research, 26(1), 938–945. 10.1007/s11356-018-3592-8 [DOI] [PubMed] [Google Scholar]
  19. Cao, Y. , Long, J. , Liu, L. , He, T. , Jiang, L. , Zhao, C. , & Li, Z. (2017). A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sciences, 186, 33–42. 10.1016/j.lfs.2017.08.003 [DOI] [PubMed] [Google Scholar]
  20. Chakrabarti, S. , Goyary, D. , Karmakar, S. , & Chattopadhyay, P. (2019). Exploration of cytotoxic and genotoxic endpoints following sub‐chronic oral exposure to titanium dioxide nanoparticles. Toxicology and Industrial Health, 35(9), 577–592. 10.1177/0748233719879611 [DOI] [PubMed] [Google Scholar]
  21. Chang, H. , Li, L. , Deng, Y. , Song, G. , & Wang, Y. (2023). Protective effects of lycopene on TiO(2) nanoparticle‐induced damage in the liver of mice. Journal of Applied Toxicology, 43(6), 913–928. 10.1002/jat.4433 [DOI] [PubMed] [Google Scholar]
  22. Chen, J. , Zhang, J. , Cao, J. , Xia, Z. , & Gan, J. (2016). Inflammatory MAPK and NF‐κB signaling pathways differentiated hepatitis potential of two agglomerated titanium dioxide particles. Journal of Hazardous Materials, 304, 370–378. 10.1016/j.jhazmat.2015.11.002 [DOI] [PubMed] [Google Scholar]
  23. Chen, X. X. , Cheng, B. , Yang, Y. X. , Cao, A. , Liu, J. H. , Du, L. J. , Liu, Y. , Zhao, Y. , & Wang, H. (2013). Characterization and preliminary toxicity assay of nano‐titanium dioxide additive in sugar‐coated chewing gum. Small, 9(9–10), 1765–1774. 10.1002/smll.201201506 [DOI] [PubMed] [Google Scholar]
  24. Chen, Z. , Han, S. , Zheng, P. , Zhang, J. , Zhou, S. , & Jia, G. (2022). Landscape of lipidomic metabolites in gut‐liver axis of Sprague‐Dawley rats after oral exposure to titanium dioxide nanoparticles. Particle and Fibre Toxicology, 19(1), 53. 10.1186/s12989-022-00484-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Chen, Z. , Zheng, P. , Han, S. , Zhang, J. , Li, Z. , Zhou, S. , & Jia, G. (2020). Tissue‐specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale, 12(38), 20033–20046. 10.1039/D0NR05591C [DOI] [PubMed] [Google Scholar]
  26. Chen, Z. , Zhou, D. , Han, S. , Zhou, S. , & Jia, G. (2019). Hepatotoxicity and the role of the gut‐liver axis in rats after oral administration of titanium dioxide nanoparticles. Particle and Fibre Toxicology, 16(1), 48. 10.1186/s12989-019-0332-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cho, W. S. , Kang, B. C. , Lee, J. K. , Jeong, J. , Che, J. H. , & Seok, S. H. (2013). Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Particle and Fibre Toxicology, 10, 9. 10.1186/1743-8977-10-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Coccini, T. , Grandi, S. , Lonati, D. , Locatelli, C. , & De Simone, U. (2015). Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology, 48, 77–89. 10.1016/j.neuro.2015.03.006 [DOI] [PubMed] [Google Scholar]
  29. Cui, Y. , Gong, X. , Duan, Y. , Li, N. , Hu, R. , Liu, H. , Hong, M. , Zhou, M. , Wang, L. , & Wang, H. (2010). Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. Journal of Hazardous Materials, 183(1–3), 874–880. 10.1016/j.jhazmat.2010.07.109 [DOI] [PubMed] [Google Scholar]
  30. Cui, Y. , Liu, H. , Zhou, M. , Duan, Y. , Li, N. , Gong, X. , Hu, R. , Hong, M. , & Hong, F. (2011). Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. Journal of Biomedical Materials Research Part a, 96(1), 221–229. 10.1002/jbm.a.32976 [DOI] [PubMed] [Google Scholar]
  31. Donner, E. M. , Myhre, A. , Brown, S. C. , Boatman, R. , & Warheit, D. B. (2016). In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment‐grade & 3 nanoscale) in orally‐exposed rats. Regulatory Toxicology and Pharmacology, 74, 64–74. 10.1016/j.yrtph.2015.11.003 [DOI] [PubMed] [Google Scholar]
  32. Duan, Y. , Liu, J. , Ma, L. , Li, N. , Liu, H. , Wang, J. , Zheng, L. , Liu, C. , Wang, X. , & Zhao, X. (2010). Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials, 31(5), 894–899. 10.1016/j.biomaterials.2009.10.003 [DOI] [PubMed] [Google Scholar]
  33. Dudefoi, W. , Moniz, K. , Allen‐Vercoe, E. , Ropers, M. H. , & Walker, V. K. (2017). Impact of food grade and nano‐TiO(2) particles on a human intestinal community. Food and Chemical Toxicology, 106(Pt A), 242–249. 10.1016/j.fct.2017.05.050 [DOI] [PubMed] [Google Scholar]
  34. EFSA . (2016). Re‐evaluation of titanium dioxide (E 171) as a food additive. EFSA Journal, 14(9), e04545. 10.2903/j.efsa.2016.4545 [DOI] [Google Scholar]
  35. Fadda, L. M. , Hagar, H. , Mohamed, A. M. , & Ali, H. M. (2018). Quercetin and idebenone ameliorate oxidative stress, inflammation, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in rat liver. Dose‐Response, 16(4), 1559325818812188. 10.1177/1559325818812188 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Farrell, T. P. , & Magnuson, B. (2017). Absorption, distribution and excretion of four forms of titanium dioxide pigment in the rat. Journal of Food Science, 82(8), 1985–1993. 10.1111/1750-3841.13791 [DOI] [PubMed] [Google Scholar]
  37. FDA . (2014). Drug Administration Code of Federal Regulations Title 21. Department of Health and Human Services, ed. 21CFR20157. Washington: US Food and Drug Administration.
  38. Filippi, C. , Pryde, A. , Cowan, P. , Lee, T. , Hayes, P. , Donaldson, K. , Plevris, J. , & Stone, V. (2015). Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: Impact on metabolism and bioenergetics. Nanotoxicology, 9(1), 126–134. 10.3109/17435390.2014.895437 [DOI] [PubMed] [Google Scholar]
  39. Fiordaliso, F. , Bigini, P. , Salmona, M. , & Diomede, L. (2022). Toxicological impact of titanium dioxide nanoparticles and food‐grade titanium dioxide (E171) on human and environmental health. Environmental Science: Nano, 9(4), 1199–1211. 10.1039/D1EN00833A [DOI] [Google Scholar]
  40. Foroozandeh, P. , & Aziz, A. A. (2015). Merging worlds of nanomaterials and biological environment: Factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Research Letters, 10(1), 221. 10.1186/s11671-015-0922-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. FSANZ . (2022). Titanium dioxide as a food additive. https://www.foodstandards.gov.au/consumer/foodtech/Documents/FSANZ_TiO2_Assessment_report.pdf
  42. Fukatsu, H. , Koide, N. , Tada‐Oikawa, S. , Izuoka, K. , Ikegami, A. , Ichihara, S. , Ukaji, T. , Morita, N. , Naiki, Y. , & Komatsu, T. (2018). NF‐κB inhibitor DHMEQ inhibits titanium dioxide nanoparticle‐induced interleukin‐1β production: Inhibition of the PM2.5‐induced inflammation model. Molecular Medicine Reports, 18(6), 5279–5285. 10.3892/mmr.2018.9533 [DOI] [PubMed] [Google Scholar]
  43. Gázquez, M. J. , Bolívar, J. P. , García‐Tenorio García‐Balmaseda, R. , & Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 5, 441–458. 10.4236/msa.2014.57048 [DOI] [Google Scholar]
  44. Gilbert, J. D. , Neubauer, K. , & Byard, R. W. (2021). Macroscopic identification of visceral titanium pigment in an intravenous drug user. Journal of Forensic Sciences, 66(5), 2024–2028. 10.1111/1556-4029.14779 [DOI] [PubMed] [Google Scholar]
  45. Gu, N. , Hu, H. , Guo, Q. , Jin, S. , Wang, C. , Oh, Y. , Feng, Y. , & Wu, Q. (2015). Effects of oral administration of titanium dioxide fine‐sized particles on plasma glucose in mice. Food and Chemical Toxicology, 86, 124–131. 10.1016/j.fct.2015.10.003 [DOI] [PubMed] [Google Scholar]
  46. Hamilton, L. E. (2013). Titanium pigment deposition in an intravenous drug user. Academic Forensic Pathology, 3(4), 486–489. 10.23907/2013.059 [DOI] [Google Scholar]
  47. Han, H. Y. , Yang, M. J. , Yoon, C. , Lee, G. H. , Kim, D. W. , Kim, T. W. , Kwak, M. , Heo, M. B. , Lee, T. G. , Kim, S. , Oh, J. H. , Lim, H. J. , Oh, I. , Yoon, S. , & Park, E. J. (2021). Toxicity of orally administered food‐grade titanium dioxide nanoparticles. Journal of Applied Toxicology, 41(7), 1127–1147. 10.1002/jat.4099 [DOI] [PubMed] [Google Scholar]
  48. Hassanein, K. M. , & El‐Amir, Y. O. (2017). Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague‐Dawley rats. Pathology‐Research and Practice, 213(1), 13–22. 10.1016/j.prp.2016.08.002 [DOI] [PubMed] [Google Scholar]
  49. Hassanein, K. M. , & El‐Amir, Y. O. (2018). Ameliorative effects of thymoquinone on titanium dioxide nanoparticles induced acute toxicity in rats. International Journal of Veterinary Science and Medicine, 6(1), 16–21. 10.1016/j.ijvsm.2018.02.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hazelhoff, M. H. , Bulacio, R. P. , & Torres, A. M. (2022). Renal tubular response to titanium dioxide nanoparticles exposure. Drug and Chemical Toxicology, 1–8. 10.1080/01480545.2022.2134889 [DOI] [PubMed] [Google Scholar]
  51. Heidari, Z. , Mohammadipour, A. , Haeri, P. , & Ebrahimzadeh‐Bideskan, A. (2019). The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. Iranian Journal of Basic Medical Sciences, 22(7), 745–751. 10.22038/ijbms.2019.33611.8018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Heo, M. B. , Kwak, M. , An, K. S. , Kim, H. J. , Ryu, H. Y. , Lee, S. M. , Song, K. S. , Kim, I. Y. , Kwon, J.‐H. , & Lee, T. G. (2020). Oral toxicity of titanium dioxide P25 at repeated dose 28‐day and 90‐day in rats. Particle and Fibre Toxicology, 17(1), 34. 10.1186/s12989-020-00350-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Heringa, M. B. , Geraets, L. , van Eijkeren, J. C. , Vandebriel, R. J. , de Jong, W. H. , & Oomen, A. G. (2016). Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology, 10(10), 1515–1525. 10.1080/17435390.2016.1238113 [DOI] [PubMed] [Google Scholar]
  54. Heringa, M. B. , Peters, R. J. B. , Bleys, R. , van der Lee, M. K. , Tromp, P. C. , van Kesteren, P. C. E. , van Eijkeren, J. C. H. , Undas, A. K. , Oomen, A. G. , & Bouwmeester, H. (2018). Detection of titanium particles in human liver and spleen and possible health implications. Particle and Fibre Toxicology, 15(1), 15. 10.1186/s12989-018-0251-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hernández‐Gea, V. , Hilscher, M. , Rozenfeld, R. , Lim, M. P. , Nieto, N. , Werner, S. , Devi, L. A. , & Friedman, S. L. (2013). Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. Journal of Hepatology, 59(1), 98–104. 10.1016/j.jhep.2013.02.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hirakawa, K. , Mori, M. , Yoshida, M. , Oikawa, S. , & Kawanishi, S. (2004). Photo‐irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radical Research, 38(5), 439–447. 10.1080/1071576042000206487 [DOI] [PubMed] [Google Scholar]
  57. Hong, F. , Ji, J. , Ze, X. , Zhou, Y. , & Ze, Y. (2020). Liver inflammation and fibrosis induced by long‐term exposure to nano titanium dioxide (TiO2) nanoparticles in mice and its molecular mechanism. Journal of Biomedical Nanotechnology, 16(5), 616–625. 10.1166/jbn.2020.2921 [DOI] [PubMed] [Google Scholar]
  58. Hong, F. , Yu, X. , Wu, N. , & Zhang, Y.‐Q. (2017). Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicology Research, 6(2), 115–133. 10.1039/C6TX00338A [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hong, J. , Wang, L. , Zhao, X. , Yu, X. , Sheng, L. , Xu, B. , Liu, D. , Zhu, Y. , Long, Y. , & Hong, F. (2014). Th2 factors may be involved in TiO2 NP‐induced hepatic inflammation. Journal of Agricultural and Food Chemistry, 62(28), 6871–6878. 10.1021/jf501428w [DOI] [PubMed] [Google Scholar]
  60. Hu, H. , Guo, Q. , Wang, C. , Ma, X. , He, H. , Oh, Y. , Feng, Y. , Wu, Q. , & Gu, N. (2015). Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species‐induced insulin resistance in mice. Journal of Applied Toxicology, 35(10), 1122–1132. 10.1002/jat.3150 [DOI] [PubMed] [Google Scholar]
  61. Hu, H. , Zhang, B. , Li, L. , Guo, Q. , Yang, D. , Wei, X. , Fan, X. , Liu, J. , Wu, Q. , & Oh, Y. (2020). The toxic effects of titanium dioxide nanoparticles on plasma glucose metabolism are more severe in developing mice than in adult mice. Environmental Toxicology, 35(4), 443–456. 10.1002/tox.22880 [DOI] [PubMed] [Google Scholar]
  62. Hu, R. , Zheng, L. , Zhang, T. , Gao, G. , Cui, Y. , Cheng, Z. , Cheng, J. , Hong, M. , Tang, M. , & Hong, F. (2011). Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 191(1–3), 32–40. 10.1016/j.jhazmat.2011.04.027 [DOI] [PubMed] [Google Scholar]
  63. Hussain, S. , Thomassen, L. C. , Ferecatu, I. , Borot, M.‐C. , Andreau, K. , Martens, J. A. , Fleury, J. , Baeza‐Squiban, A. , Marano, F. , & Boland, S. (2010). Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Particle and Fibre Toxicology, 7(1), 10. 10.1186/1743-8977-7-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. IARC . (2010). Carbon black, titanium dioxide, and talc (Vol. 93). IARC Press, International Agency for Research on Cancer. [Google Scholar]
  65. Jacobs, J. J. , Skipor, A. K. , Black, J. , Urban, R. , & Galante, J. O. (1991). Release and excretion of metal in patients who have a total hip‐replacement component made of titanium‐base alloy. The Journal of Bone and Joint Surgery. American Volume, 73(10), 1475–1486. 10.2106/00004623-199173100-00005 [DOI] [PubMed] [Google Scholar]
  66. Jafari, A. , Rasmi, Y. , Hajaghazadeh, M. , & Karimipour, M. (2018). Hepatoprotective effect of thymol against subchronic toxicity of titanium dioxide nanoparticles: Biochemical and histological evidences. Environmental Toxicology and Pharmacology, 58, 29–36. 10.1016/j.etap.2017.12.010 [DOI] [PubMed] [Google Scholar]
  67. Jia, T. , Nie, P. , & Xu, H. (2024). Combined exposure of nano‐titanium dioxide and polystyrene nanoplastics exacerbate oxidative stress‐induced liver injury in mice by regulating the Keap‐1/Nrf2/ARE pathway. Environmental Toxicology, 39, 2681–2691. 10.1002/tox.24141 [DOI] [PubMed] [Google Scholar]
  68. Jia, X. , Wang, S. , Zhou, L. , & Sun, L. (2017). The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Research Letters, 12(1), 1–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Jin, S. J. , Yang, Y. , Ma, L. , Ma, B. H. , Ren, L. P. , Guo, L. C. , Wang, W. B. , Zhang, Y. X. , Zhao, Z. J. , & Cui, M. (2017). In vivo and in vitro induction of the apoptotic effects of oxysophoridine on colorectal cancer cells via the Bcl‐2/Bax/caspase‐3 signaling pathway. Oncology Letters, 14(6), 8000–8006. 10.3892/ol.2017.7227 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Jin, T. , Costa, M. , & Chen, X. (2022). Titanium. In Handbook on the toxicology of metals (pp. 857–868). Elsevier. 10.1016/B978-0-12-822946-0.00030-1 [DOI] [Google Scholar]
  71. Jo, M.‐R. , Yu, J. , Kim, H.‐J. , Song, J. H. , Kim, K.‐M. , Oh, J.‐M. , & Choi, S.‐J. (2016). Titanium dioxide nanoparticle‐biomolecule interactions influence oral absorption. Nanomaterials, 6(12), 225. 10.3390/nano6120225 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Jones, K. , Morton, J. , Smith, I. , Jurkschat, K. , Harding, A. H. , & Evans, G. (2015). Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicology Letters, 233(2), 95–101. 10.1016/j.toxlet.2014.12.005 [DOI] [PubMed] [Google Scholar]
  73. Jovanović, B. (2015). Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 11(1), 10–20. 10.1002/ieam.1571 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Jugan, M.‐L. , Barillet, S. , Simon‐Deckers, A. , Herlin‐Boime, N. , Sauvaigo, S. , Douki, T. , & Carriere, M. (2012). Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology, 6(5), 501–513. 10.3109/17435390.2011.587903 [DOI] [PubMed] [Google Scholar]
  75. Kaewklin, P. , Siripatrawan, U. , Suwanagul, A. , & Lee, Y. S. (2018). Active packaging from chitosan‐titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523–529. 10.1016/j.ijbiomac.2018.01.124 [DOI] [PubMed] [Google Scholar]
  76. Kassama, L. , & Liu, L. (2017). In vitro modeling of the gastrointestinal tract: Significance in food and nutritional research and health implications. Food & Nutrition Journal, 2, 131. 10.29011/2575-7091.100031 [DOI] [Google Scholar]
  77. Kassebaum, N. J. , & Collaborators, G. A. (2016). The global burden of anemia. Hematology/Oncology Clinics of North America, 30(2), 247–308. 10.1016/j.hoc.2015.11.002 [DOI] [PubMed] [Google Scholar]
  78. Keller, A. A. , McFerran, S. , Lazareva, A. , & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1692. 10.1007/s11051-013-1692-4 [DOI] [Google Scholar]
  79. Keller, C. A. , Frost, A. , Cagle, P. T. , & Abraham, J. L. (1995). Pulmonary alveolar proteinosis in a painter with elevated pulmonary concentrations of titanium. Chest, 108(1), 277–280. 10.1378/chest.108.1.277 [DOI] [PubMed] [Google Scholar]
  80. Kermanizadeh, A. , Gaiser, B. K. , Hutchison, G. R. , & Stone, V. (2012). An in vitro liver model‐assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Particle and Fibre Toxicology, 9(1), 1–13. 10.1186/1743-8977-9-28 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Khorsandi, L. , Orazizadeh, M. , Mansori, E. , & Fakhredini, F. (2015). Glycyrrhizic acid attenuated lipid peroxidation induced by titanium dioxide nanoparticles in rat liver. Bratislavske Lekarske Listy, 116(6), 383–388. 10.4149/BLL_2015_073 [DOI] [PubMed] [Google Scholar]
  82. Koltermann‐Jülly, J. , Ma‐Hock, L. , Gröters, S. , & Landsiedel, R. (2020). Appearance of alveolar macrophage subpopulations in correlation with histopathological effects in short‐term inhalation studies with biopersistent (nano) materials. Toxicologic Pathology, 48(3), 446–464. 10.1177/0192623319896347 [DOI] [PubMed] [Google Scholar]
  83. Korotcenkov, G. (2020a). Current trends in nanomaterials for metal oxide‐based conductometric gas sensors: Advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials, 10(7), 1392. 10.3390/nano10071392 [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Korotcenkov, G. (2020b). Titanium dioxide (TiO2) and its applications. Elsevier. [Google Scholar]
  85. Kreyling, W. G. , Holzwarth, U. , Schleh, C. , Kozempel, J. , Wenk, A. , Haberl, N. , Hirn, S. , Schäffler, M. , Lipka, J. , Semmler‐Behnke, M. , & Gibson, N. (2017). Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology, 11(4), 443–453. 10.1080/17435390.2017.1306893 [DOI] [PubMed] [Google Scholar]
  86. La Maestra, S. , D'Agostini, F. , Sanguineti, E. , Yus González, A. , Annis, S. , Militello, G. M. , Parisi, G. , Scuderi, A. , & Gaggero, L. (2021). Dispersion of natural airborne TiO2 fibres in excavation activity as a potential environmental and human health risk. International Journal of Environmental Research and Public Health, 18(12), 6587. 10.3390/ijerph18126587 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Lee, J. , Jeong, J. S. , Kim, S. Y. , Park, M. K. , Choi, S. D. , Kim, U. J. , Park, K. , Jeong, E. J. , Nam, S. Y. , & Yu, W. J. (2019). Titanium dioxide nanoparticles oral exposure to pregnant rats and its distribution. Particle and Fibre Toxicology, 16, 31. 10.1186/s12989-019-0313-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Li, J. , Yang, S. , Lei, R. , Gu, W. , Qin, Y. , Ma, S. , Chen, K. , Chang, Y. , Bai, X. , Xia, S. , Wu, C. , & Xing, G. (2018). Oral administration of rutile and anatase TiO(2) nanoparticles shifts mouse gut microbiota structure. Nanoscale, 10(16), 7736–7745. 10.1039/c8nr00386f [DOI] [PubMed] [Google Scholar]
  89. Li, T. , Wang, H. , Dong, S. , Liang, M. , Ma, J. , Jiang, X. , & Yu, W. (2022). Protective effects of maslinic acid on high fat diet‐induced liver injury in mice. Life Sciences, 301, 120634. 10.1016/j.lfs.2022.120634 [DOI] [PubMed] [Google Scholar]
  90. Li, Y. , Li, J. , Yin, J. , Li, W. , Kang, C. , Huang, Q. , & Li, Q. (2010). Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. Journal of Nanoscience and Nanotechnology, 10(12), 8544–8549. 10.1166/jnn.2010.2690 [DOI] [PubMed] [Google Scholar]
  91. Li, Z. , He, J. , Li, B. , Zhang, J. , He, K. , Duan, X. , Huang, R. , Wu, Z. , & Xiang, G. (2020). Titanium dioxide nanoparticles induce endoplasmic reticulum stress‐mediated apoptotic cell death in liver cancer cells. Journal of International Medical Research, 48(4), 0300060520903652. 10.1177/0300060520903652 [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Liguori, I. , Russo, G. , Curcio, F. , Bulli, G. , Aran, L. , Della‐Morte, D. , Gargiulo, G. , Testa, G. , Cacciatore, F. , & Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772. 10.2147/CIA.S158513 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Lim, J.‐H. , Bae, D. , & Fong, A. (2018). Titanium dioxide in food products: Quantitative analysis using ICP‐MS and Raman spectroscopy. Journal of Agricultural and Food Chemistry, 66(51), 13533–13540. 10.1021/acs.jafc.8b06571 [DOI] [PubMed] [Google Scholar]
  94. Lima, M. A. , dos Santos, V. , Demachki, S. , & Lazo, J. (2004). Titanium pigment in tissues of drug addicts: Report of 5 necropsied cases. Revista do Hospital das Clínicas, 59, 86–88. 10.1590/S0041-87812004000200007 [DOI] [PubMed] [Google Scholar]
  95. Lin, H. , Tan, J. , Wang, J. , Xie, C. , Chen, B. , Luo, M. , Liu, Y. , Liao, W. , Huang, W. , Wang, H. , Jiang, Y. , Wang, K. , Lu, C. , & Zhao, M. (2023). Subchronic oral toxicity study of food‐related titanium dioxide nanoparticles in rats involved in Ti biodistribution and gut microbiota. Journal of Agricultural and Food Chemistry, 71(3), 1713–1726. 10.1021/acs.jafc.2c05341 [DOI] [PubMed] [Google Scholar]
  96. Liu, Z. , Lv, Y. , Zhao, N. , Guan, G. , & Wang, J. (2015). Protein kinase R‐like ER kinase and its role in endoplasmic reticulum stress‐decided cell fate. Cell Death & Disease, 6(7), e1822. 10.1038/cddis.2015.183 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Lomer, M. C. , Thompson, R. P. , Commisso, J. , Keen, C. L. , & Powell, J. J. (2000). Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst, 125(12), 2339–2343. 10.1039/b006285p [DOI] [PubMed] [Google Scholar]
  98. MacNicoll, A. , Kelly, M. , Aksoy, H. , Kramer, E. , Bouwmeester, H. , & Chaudhry, Q. (2015). A study of the uptake and biodistribution of nano‐titanium dioxide using in vitro and in vivo models of oral intake. Journal of Nanoparticle Research, 17(2), 66. 10.1007/s11051-015-2862-3 [DOI] [Google Scholar]
  99. Manivannan, J. , Banerjee, R. , & Mukherjee, A. (2020). Genotoxicity analysis of rutile titanium dioxide nanoparticles in mice after 28 days of repeated oral administration. The Nucleus, 63(1), 17–24. 10.1007/s13237-019-00277-0 [DOI] [Google Scholar]
  100. Martins, A. D. C. Jr. , Azevedo, L. F. , de Souza Rocha, C. C. , Carneiro, M. F. H. , Venancio, V. P. , de Almeida, M. R. , Antunes, L. M. G. , de Carvalho Hott, R. , Rodrigues, J. L. , Ogunjimi, A. T. , Adeyemi, J. A. , & Barbosa, F. Jr. (2017). Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co‐exposed to silver and titanium dioxide nanoparticles. Journal of Toxicology and Environmental Health. Part a, 80(19–21), 1156–1165. 10.1080/15287394.2017.1357376 [DOI] [PubMed] [Google Scholar]
  101. Mehndiratta, M. , Agarwal, P. , Tatke, M. , & Krishnamurthy, M. (2002). Neurological mitochondrial cytopathies. Neurology India, 50(2), 162–167. [PubMed] [Google Scholar]
  102. Mohamed, H. R. H. , El‐Shamy, S. , Abdelgayed, S. S. , Albash, R. , & El‐Shorbagy, H. (2024). Modulation efficiency of clove oil nano‐emulsion against genotoxic, oxidative stress, and histological injuries induced via titanium dioxide nanoparticles in mice. Scientific Reports, 14(1), 7715. 10.1038/s41598-024-57728-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mohammadinejad, R. , Moosavi, M. A. , Tavakol, S. , Vardar, D. Ö. , Hosseini, A. , Rahmati, M. , Dini, L. , Hussain, S. , Mandegary, A. , & Klionsky, D. J. (2019). Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 15(1), 4–33. 10.1080/15548627.2018.1509171 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Mohammadparast, V. , & Mallard, B. L. (2023). The effect and underlying mechanisms of titanium dioxide nanoparticles on glucose homeostasis: A literature review. Journal of Applied Toxicology, 43(1), 22–31. 10.1002/jat.4318 [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Mohammed, E. T. , & Safwat, G. M. (2020). Grape seed proanthocyanidin extract mitigates titanium dioxide nanoparticle (TiO2‐NPs)–induced hepatotoxicity through TLR‐4/NF‐κB signaling pathway. Biological Trace Element Research, 196(2), 579–589. 10.1007/s12011-019-01955-5 [DOI] [PubMed] [Google Scholar]
  106. Moon, C. , Park, H.‐J. , Choi, Y.‐H. , Park, E.‐M. , Castranova, V. , & Kang, J. L. (2010). Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. Journal of Toxicology and Environmental Health, Part a, 73(5–6), 396–409. 10.1080/15287390903486543 [DOI] [PubMed] [Google Scholar]
  107. Moradi, A. , Ziamajidi, N. , Ghafourikhosroshahi, A. , & Abbasalipourkabir, R. (2019). Effects of vitamin A and vitamin E on attenuation of titanium dioxide nanoparticles‐induced toxicity in the liver of male Wistar rats. Molecular Biology Reports, 46(3), 2919–2932. 10.1007/s11033-019-04752-4 [DOI] [PubMed] [Google Scholar]
  108. Morgan, A. , Ibrahim, M. A. , Galal, M. K. , Ogaly, H. A. , & Abd‐Elsalam, R. M. (2018). Innovative perception on using Tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomedicine & Pharmacotherapy, 103, 553–561. 10.1016/j.biopha.2018.04.064 [DOI] [PubMed] [Google Scholar]
  109. Moselhy, W. A. , Ibrahim, M. A. , Khalifa, A. G. , El‐Nahass, E. S. , & Hassan, N. E. Y. (2024). The effects of TiO2, ZnO, IONs and Al2O3 metallic nanoparticles on the CYP1A1 and NBN transcripts in rat liver. Toxicology Research, 13(2), tfae034. 10.1093/toxres/tfae034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Moustafa, G. G. , & Hussein, M. M. A. (2016). New insight on using aged garlic extract against toxic impacts of titanium dioxide bulk salt triggers inflammatory and fibrotic cascades in male rats. Biomedicine & Pharmacotherapy, 84, 687–697. 10.1016/j.biopha.2016.09.092 [DOI] [PubMed] [Google Scholar]
  111. NCI . (1979). National Toxicology Program. Bioassay of titanium dioxide for possible carcinogenicity. National Cancer Institute Carcinogen Technical Report Series, 97, 1–123. [PubMed] [Google Scholar]
  112. Nie, P. , Wang, M. , Zhao, Y. , Liu, S. , Chen, L. , & Xu, H. (2021). Protective effect of Lactobacillus rhamnosus GG on TiO2 nanoparticles‐induced oxidative stress damage in the liver of young rats. Nanomaterials, 11(3), 803. 10.3390/nano11030803 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Niu, L. , Shao, M. , Liu, Y. , Hu, J. , Li, R. , Xie, H. , Zhou, L. , Shi, L. , Zhang, R. , & Niu, Y. (2017). Reduction of oxidative damages induced by titanium dioxide nanoparticles correlates with induction of the Nrf2 pathway by GSPE supplementation in mice. Chemico‐Biological Interactions, 275, 133–144. 10.1016/j.cbi.2017.07.025 [DOI] [PubMed] [Google Scholar]
  114. Ogunsuyi, O. , Ogunsuyi, O. , Akanni, O. , Alabi, O. , Alimba, C. , Adaramoye, O. , Cambier, S. , Eswara, S. , Gutleb, A. C. , & Bakare, A. (2022). Physiological and histopathological alterations in male Swiss mice after exposure to titanium dioxide (anatase) and zinc oxide nanoparticles and their binary mixture. Drug and Chemical Toxicology, 45(3), 1188–1213. 10.1080/01480545.2020.1811720 [DOI] [PubMed] [Google Scholar]
  115. Ogut, S. , Aktas, S. , Bozkurt, M. F. , Unubol Aypak, S. , & Berber, R. (2024). The protective effects of betanin on titanium dioxide (TiO2) nanoparticle exposure in rats. Toxin Reviews, 43(1), 92–101. 10.1080/15569543.2023.2294265 [DOI] [Google Scholar]
  116. Orazizadeh, M. , Fakhredini, F. , Mansouri, E. , & Khorsandi, L. (2014). Effect of glycyrrhizic acid on titanium dioxide nanoparticles‐induced hepatotoxicity in rats. Chemico‐Biological Interactions, 220, 214–221. 10.1016/j.cbi.2014.07.001 [DOI] [PubMed] [Google Scholar]
  117. Orazizadeh, M. , Khorsandi, L. , Mansouri, E. , & Fakhredini, F. (2020). The effect of glycyrrhizin acid on Bax and Bcl2 expression in hepatotoxicity induced by titanium dioxide nanoparticles in rats. Gastroenterology and Hepatology from Bed to Bench, 13(2), 168–176. [PMC free article] [PubMed] [Google Scholar]
  118. Ortiz, A. E. , & Alster, T. S. (2012). Rising concern over cosmetic tattoos. Dermatologic Surgery, 38(3), 424–429. 10.1111/j.1524-4725.2011.02202.x [DOI] [PubMed] [Google Scholar]
  119. Patri, A. , Umbreit, T. , Zheng, J. , Nagashima, K. , Goering, P. , Francke‐Carroll, S. , Gordon, E. , Weaver, J. , Miller, T. , Sadrieh, N. , McNeil, S. , & Stratmeyer, M. (2009). Energy dispersive X‐ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. Journal of Applied Toxicology, 29(8), 662–672. 10.1002/jat.1454 [DOI] [PubMed] [Google Scholar]
  120. Peters, R. J. , van Bemmel, G. , Herrera‐Rivera, Z. , Helsper, H. P. , Marvin, H. J. , Weigel, S. , Tromp, P. C. , Oomen, A. G. , Rietveld, A. G. , & Bouwmeester, H. (2014). Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry, 62(27), 6285–6293. 10.1021/jf5011885 [DOI] [PubMed] [Google Scholar]
  121. Peters, R. J. B. , Oomen, A. G. , van Bemmel, G. , van Vliet, L. , Undas, A. K. , Munniks, S. , Bleys, R. , Tromp, P. C. , Brand, W. , & van der Lee, M. (2020). Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology, 14(3), 420–432. 10.1080/17435390.2020.1718232 [DOI] [PubMed] [Google Scholar]
  122. Petković, J. , Žegura, B. , Stevanović, M. , Drnovšek, N. , Uskoković, D. , Novak, S. , & Filipič, M. (2011). DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 5(3), 341–353. 10.3109/17435390.2010.507316 [DOI] [PubMed] [Google Scholar]
  123. Phillips, D. H. , & Arlt, V. M. (2009). Genotoxicity: Damage to DNA and its consequences. Molecular, Clinical and Environmental Toxicology, 87–110. 10.1007/978-3-7643-8336-7_4 [DOI] [PubMed] [Google Scholar]
  124. Pogribna, M. , Koonce, N. A. , Mathew, A. , Word, B. , Patri, A. K. , Lyn‐Cook, B. , & Hammons, G. (2020). Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology, 14(4), 534–553. 10.1080/17435390.2020.1723730 [DOI] [PubMed] [Google Scholar]
  125. Prasad, R. Y. , Simmons, S. O. , Killius, M. G. , Zucker, R. M. , Kligerman, A. D. , Blackman, C. F. , Fry, R. C. , & DeMarini, D. M. (2014). Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS‐2B cells: Role of cell culture media. Environmental and Molecular Mutagenesis, 55(4), 336–342. 10.1002/em.21848 [DOI] [PubMed] [Google Scholar]
  126. Riedle, S. , Wills, J. W. , Miniter, M. , Otter, D. E. , Singh, H. , Brown, A. P. , Micklethwaite, S. , Rees, P. , Jugdaohsingh, R. , Roy, N. C. , Hewitt, R. E. , & Powell, J. J. (2020). A murine oral‐exposure model for nano‐ and micro‐particulates: Demonstrating human relevance with food‐grade titanium dioxide. Small, 16(21), e2000486. 10.1002/smll.202000486 [DOI] [PubMed] [Google Scholar]
  127. Rompelberg, C. , Heringa, M. B. , van Donkersgoed, G. , Drijvers, J. , Roos, A. , Westenbrink, S. , Peters, R. , van Bemmel, G. , Brand, W. , & Oomen, A. G. (2016). Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology, 10(10), 1404–1414. 10.1080/17435390.2016.1222457 [DOI] [PubMed] [Google Scholar]
  128. Ropers, M.‐H. , Terrisse, H. , Mercier‐Bonin, M. , & Humbert, B. (2017). Titanium dioxide as food additive. Application of Titanium Dioxide, 10. 10.5772/intechopen.68883 [DOI] [Google Scholar]
  129. Saber, A. T. , Lamson, J. S. , Jacobsen, N. R. , Ravn‐Haren, G. , Hougaard, K. S. , Nyendi, A. N. , Wahlberg, P. , Madsen, A. M. , Jackson, P. , & Wallin, H. (2013). Particle‐induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE, 8(7), e69020. 10.1371/journal.pone.0069020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Sallam, M. F. , Ahmed, H. , El‐Nekeety, A. A. , Diab, K. A. , Abdel‐Aziem, S. H. , Sharaf, H. A. , & Abdel‐Wahhab, M. A. (2022). Assessment of the oxidative damage and genotoxicity of titanium dioxide nanoparticles and exploring the protective role of holy basil oil nanoemulsions in rats. Biological Trace Element Research, 1–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Sallam, M. F. , Ahmed, H. M. , Diab, K. A. , El‐Nekeety, A. A. , Abdel‐Aziem, S. H. , Sharaf, H. A. , & Abdel‐Wahhab, M. A. (2022). Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles‐induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. Journal of Trace Elements in Medicine and Biology, 73, 127024. 10.1016/j.jtemb.2022.127024 [DOI] [PubMed] [Google Scholar]
  132. Salman, A. S. , Al‐Shaikh, T. M. , Hamza, Z. K. , El‐Nekeety, A. A. , Bawazir, S. S. , Hassan, N. S. , & Abdel‐Wahhab, M. A. (2021). Matlodextrin‐cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles‐induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. Environmental Science and Pollution Research, 28(29), 39035–39051. 10.1007/s11356-021-13518-0 [DOI] [PubMed] [Google Scholar]
  133. Sha, B. , Gao, W. , Wang, S. , Xu, F. , & Lu, T. (2011). Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat. Composites Part B: Engineering, 42(8), 2136–2144. 10.1016/j.compositesb.2011.05.009 [DOI] [Google Scholar]
  134. Shakeel, M. , Jabeen, F. , Iqbal, R. , Chaudhry, A. S. , Zafar, S. , Ali, M. , Khan, M. S. , Khalid, A. , Shabbir, S. , & Asghar, M. S. (2018). Assessment of titanium dioxide nanoparticles (TiO2‐NPs) induced hepatotoxicity and ameliorative effects of Cinnamomum cassia in Sprague‐Dawley rats. Biological Trace Element Research, 182(1), 57–69. 10.1007/s12011-017-1074-3 [DOI] [PubMed] [Google Scholar]
  135. Shen, Y. , Posavec, L. , Bolisetty, S. , Hilty, F. M. , Nyström, G. , Kohlbrecher, J. , Hilbe, M. , Rossi, A. , Baumgartner, J. , & Zimmermann, M. B. (2017). Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 12(7), 642–647. 10.1038/nnano.2017.58 [DOI] [PubMed] [Google Scholar]
  136. Shi, H. , Magaye, R. , Castranova, V. , & Zhao, J. (2013). Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 10(1), 15. 10.1186/1743-8977-10-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Shi, J. Q. , Ma, Y. , Zhang, Y. , Chen, Z. J. , & Jia, G. (2023). Effects of titanium dioxide nanoparticles on circRNA expression profiles in human hepatocellular carcinoma cells HepG2. Beijing Da Xue Xue Bao Yi Xue Ban, 55(3), 392–399. 10.19723/j.issn.1671-167X.2023.03.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Shinohara, N. , Danno, N. , Ichinose, T. , Sasaki, T. , Fukui, H. , Honda, K. , & Gamo, M. (2014). Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles. Nanotoxicology, 8(2), 132–141. 10.3109/17435390.2012.763001 [DOI] [PubMed] [Google Scholar]
  139. Shirdare, M. , Jabbari, F. , Salehzadeh, M. , Ziamajidi, N. , Nourian, A. , Heidarisasan, S. , Ghavimishamekh, A. , Taheri Azandariani, M. , & Abbasalipourkabir, R. (2022). Curcuma reduces kidney and liver damage induced by titanium dioxide nanoparticles in male Wistar rats. Avicenna Journal of Phytomedicine, 12(5), 537–547. 10.22038/AJP.2021.53346.2727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Shrivastava, R. , Raza, S. , Yadav, A. , Kushwaha, P. , & Flora, S. J. (2014). Effects of sub‐acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and Chemical Toxicology, 37(3), 336–347. 10.3109/01480545.2013.866134 [DOI] [PubMed] [Google Scholar]
  141. Shukla, R. K. , Kumar, A. , Gurbani, D. , Pandey, A. K. , Singh, S. , & Dhawan, A. (2013). TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology, 7(1), 48–60. 10.3109/17435390.2011.629747 [DOI] [PubMed] [Google Scholar]
  142. Shukla, R. K. , Kumar, A. , Vallabani, N. V. S. , Pandey, A. K. , & Dhawan, A. (2014). Titanium dioxide nanoparticle‐induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine, 9(9), 1423–1434. 10.2217/nnm.13.100 [DOI] [PubMed] [Google Scholar]
  143. Silva, R. M. , TeeSy, C. , Franzi, L. , Weir, A. , Westerhoff, P. , Evans, J. E. , & Pinkerton, K. E. (2013). Biological response to nano‐scale titanium dioxide (TiO2): Role of particle dose, shape, and retention. Journal of Toxicology and Environmental Health, Part a, 76(16), 953–972. 10.1080/15287394.2013.826567 [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Suker, D. K. , & Jasim, F. A. (2018). Liver histopathological alteration after repeated intra‐tracheal instillation of titanium dioxide in male rats. Gastroenterology and Hepatology from Bed to Bench, 11(2), 159–168. [PMC free article] [PubMed] [Google Scholar]
  145. Sul, Y. T. (2010). Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw‐shaped titanium implants. International Journal of Nanomedicine, 5, 87–100. 10.2147/ijn.s8012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Talamini, L. , Gimondi, S. , Violatto, M. B. , Fiordaliso, F. , Pedica, F. , Tran, N. L. , Sitia, G. , Aureli, F. , Raggi, A. , & Nelissen, I. (2019). Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology, 13(8), 1087–1101. 10.1080/17435390.2019.1640910 [DOI] [PubMed] [Google Scholar]
  147. Tassinari, R. , Tammaro, A. , Martinelli, A. , Valeri, M. , & Maranghi, F. (2023). Sex‐specific effects of short‐term oral administration of food‐grade titanium dioxide nanoparticles in the liver and kidneys of adult rats. Toxics, 11(9), 776. 10.3390/toxics11090776 [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. TDMA . (2023). US FDA confirms the safety of titanium dioxide as a food additive. https://www.tdma.info/news/us-fda-confirms-the-safety-of-titanium-dioxide-as-a-food-additive/
  149. Teubl, B. J. , Schimpel, C. , Leitinger, G. , Bauer, B. , Fröhlich, E. , Zimmer, A. , & Roblegg, E. (2015). Interactions between nano‐TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. Journal of Hazardous Materials, 286, 298–305. 10.1016/j.jhazmat.2014.12.064 [DOI] [PubMed] [Google Scholar]
  150. Valdiglesias, V. , Costa, C. , Sharma, V. , Kiliç, G. , Pásaro, E. , Teixeira, J. P. , Dhawan, A. , & Laffon, B. (2013). Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food and Chemical Toxicology, 57, 352–361. 10.1016/j.fct.2013.04.010 [DOI] [PubMed] [Google Scholar]
  151. Vandenberg, L. N. , Welshons, W. V. , Vom Saal, F. S. , Toutain, P. L. , & Myers, J. P. (2014). Should oral gavage be abandoned in toxicity testing of endocrine disruptors? Environmental Health, 13(1), 46. 10.1186/1476-069x-13-46 [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Violatto, M. B. , Sitia, G. , Talamini, L. , Morelli, A. , Tran, N. L. , Zhang, Q. , Masood, A. , Pelaz, B. , Chakraborty, I. , Cui, D. , Parak, W. J. , Salmona, M. , Bastús, N. G. , Puntes, V. , & Bigini, P. (2023). Variations in biodistribution and acute response of differently shaped titania nanoparticles in healthy rodents. Nanomaterials (Basel), 13(7), 1174. 10.3390/nano13071174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Von Moos, L. M. , Schneider, M. , Hilty, F. M. , Hilbe, M. , Arnold, M. , Ziegler, N. , Mato, D. S. , Winkler, H. , Tarik, M. , & Ludwig, C. (2017). Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines. Nanotoxicology, 11(4), 496–506. 10.1080/17435390.2017.1314035 [DOI] [PubMed] [Google Scholar]
  154. Wang, H. , Ni, J. , Guo, X. , Zhou, T. , Ma, X. , Xue, J. , & Wang, X. (2018). Shelterin differentially respond to oxidative stress induced by TiO2‐NPs and regulate telomere length in human hepatocytes and hepatocarcinoma cells in vitro. Biochemical and Biophysical Research Communications, 503(2), 697–702. 10.1016/j.bbrc.2018.06.063 [DOI] [PubMed] [Google Scholar]
  155. Wang, J. , Zhou, G. , Chen, C. , Yu, H. , Wang, T. , Ma, Y. , Jia, G. , Gao, Y. , Li, B. , Sun, J. , Li, Y. , Jiao, F. , Zhao, Y. , & Chai, Z. (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 168(2), 176–185. 10.1016/j.toxlet.2006.12.001 [DOI] [PubMed] [Google Scholar]
  156. Wang, K. (2014). Molecular mechanisms of hepatic apoptosis. Cell Death & Disease, 5(1), e996. 10.1038/cddis.2013.499 [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Wang, Y. , Chen, Z. , Ba, T. , Pu, J. , Chen, T. , Song, Y. , Gu, Y. , Qian, Q. , Xu, Y. , & Xiang, K. (2013). Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 9(9–10), 1742–1752. 10.1002/smll.201201185 [DOI] [PubMed] [Google Scholar]
  158. Wani, M. R. , & Shadab, G. (2020). Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicology and Industrial Health, 36(7), 514–530. 10.1177/0748233720936835 [DOI] [PubMed] [Google Scholar]
  159. Warheit, D. B. , Brown, S. C. , & Donner, E. M. (2015). Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food and Chemical Toxicology, 84, 208–224. 10.1016/j.fct.2015.08.026 [DOI] [PubMed] [Google Scholar]
  160. Waseem, M. , Kaushik, P. , Dutta, S. , Chakraborty, R. , Hassan, M. I. , & Parvez, S. (2022). Modulatory role of quercetin in mitochondrial dysfunction in titanium dioxide nanoparticle‐induced hepatotoxicity. ACS Omega, 7(4), 3192–3202. 10.1021/acsomega.1c04740 [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Weir, A. , Westerhoff, P. , Fabricius, L. , Hristovski, K. , & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242–2250. 10.1021/es204168d [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Wu, W.‐h. , Sun, X. , Yu, Y.‐p. , Hu, J. , Zhao, L. , Liu, Q. , Zhao, Y.‐f. , & Li, Y.‐m. (2008). TiO2 nanoparticles promote β‐amyloid fibrillation in vitro. Biochemical and Biophysical Research Communications, 373(2), 315–318. 10.1016/j.bbrc.2008.06.035 [DOI] [PubMed] [Google Scholar]
  163. Xia, Z. , He, J. , Li, B. , He, K. , Yang, W. , Chen, X. , Zhang, J. , & Xiang, G. (2018). Titanium dioxide nanoparticles induce mitochondria‐associated apoptosis in HepG2 cells. RSC Advances, 8(55), 31764–31776. 10.1039/C8RA05132A [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  164. Yang, J. , Luo, M. , Tan, Z. , Dai, M. , Xie, M. , Lin, J. , Hua, H. , Ma, Q. , Zhao, J. , & Liu, A. (2017). Oral administration of nano‐titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. Environmental Toxicology and Pharmacology, 49, 112–118. 10.1016/j.etap.2016.12.006 [DOI] [PubMed] [Google Scholar]
  165. Yin, Z. F. , Wu, L. , Yang, H. G. , & Su, Y. H. (2013). Recent progress in biomedical applications of titanium dioxide. Physical Chemistry Chemical Physics, 15(14), 4844–4858. 10.1039/c3cp43938k [DOI] [PubMed] [Google Scholar]
  166. Younes, M. , Aggett, P. , Aguilar, F. , Crebelli, R. , Dusemund, B. , Filipič, M. , Frutos, M. J. , Galtier, P. , & Gott, D. (2018). Evaluation of four new studies on the potential toxicity of titanium dioxide used as a food additive (E 171). EFSA Journal, 16(7), e05366. 10.2903/j.efsa.2018.5366 [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Younes, M. , Aquilina, G. , Castle, L. , Engel, K. H. , Fowler, P. , Frutos Fernandez, M. J. , Fürst, P. , Gundert‐Remy, U. , Gürtler, R. , Husøy, T. , Manco, M. , Mennes, W. , Moldeus, P. , Passamonti, S. , Shah, R. , Waalkens‐Berendsen, I. , Wölfle, D. , Corsini, E. , Cubadda, F. , … Wright, M. (2021). Safety assessment of titanium dioxide (E171) as a food additive. EFSA Journal, 19(5), e06585. 10.2903/j.efsa.2021.6585 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Yu, X. , Zhao, X. , Ze, Y. , Wang, L. , Liu, D. , Hong, J. , Xu, B. , Lin, A. , Zhang, C. , & Zhao, Y. (2014). Changes of serum parameters of TiO2 nanoparticle‐induced atherosclerosis in mice. Journal of Hazardous Materials, 280, 364–371. 10.1016/j.jhazmat.2014.08.015 [DOI] [PubMed] [Google Scholar]
  169. Zhang, L. , Xie, X. , Zhou, Y. , Yu, D. , Deng, Y. , Ouyang, J. , Yang, B. , Luo, D. , Zhang, D. , & Kuang, H. (2018). Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. International Journal of Nanomedicine, 13, 777–789. 10.2147/ijn.S152400 [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Zhang, W. , Sun, J. , Liu, F. , Li, S. , Wang, X. , Su, L. , & Liu, G. (2023). Alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles. Biological Trace Element Research., 202, 624–642. 10.1007/s12011-023-03702-3 [DOI] [PubMed] [Google Scholar]
  171. Zhang, X. , Wei, Y. , Li, C. , Wang, W. , Zhang, R. , Jia, J. , & Yan, B. (2021). Intracellular exposure dose‐associated susceptibility of steatotic hepatocytes to metallic nanoparticles. International Journal of Molecular Sciences, 22(23), 12643. 10.3390/ijms222312643 [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Zhao, L. , Zhu, Y. , Chen, Z. , Xu, H. , Zhou, J. , Tang, S. , Xu, Z. , Kong, F. , Li, X. , & Zhang, Y. (2018). Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology, 12(2), 169–184. 10.1080/17435390.2018.1425502 [DOI] [PubMed] [Google Scholar]
  173. Zhao, Y. , Tang, Y. , Liu, S. , Jia, T. , Zhou, D. , & Xu, H. (2021). Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose‐induced metabolic syndrome mice via exacerbating oxidative stress‐mediated intestinal barrier damage. Food, 10(5), 986. 10.3390/foods10050986 [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Zhou, D. , Chen, Z. J. , Hu, G. P. , Yan, T. L. , Long, C. M. , Feng, H. M. , & Jia, G. (2020). Influence of oxidative/antioxidative biomarkers and inflammatory cytokines on rats after sub‐acute orally administration of titanium dioxide nanoparticles. Beijing Da Xue Xue Bao Yi Xue Ban, 52(5), 821–827. 10.19723/j.issn.1671-167X.2020.05.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Zhu, Y. , Eaton, J. W. , & Li, C. (2012). Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cells in a Bak/Bax‐independent fashion. PLoS ONE, 7(11), e50607. 10.1371/journal.pone.0050607 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Zierden, M. R. , & Valentine, A. M. (2015). Contemplating a role for titanium in organisms. Metallomics, 8(1), 9–16. 10.1039/c5mt00231a [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.


Articles from Journal of Applied Toxicology are provided here courtesy of Wiley

RESOURCES