Abstract
Denervation of rat skeletal muscle produces after 14 days a decrease in Ca2+ uptake of a heterogeneous population of sarcoplasmic-reticulum vesicles, when measured in the presence of oxalate. The Mg2+-dependent ATPase (Ca2+-independent) activity increased after the same period and the Ca2+ + Mg2+-dependent ATPase activity decreased. Concomitant with these changes, there was an increase in vesicle size and calcium content. The observations are discussed in terms of changes in altered membrane structure, manifested in the shift of the equilibrium of the ATPase from an enzyme involved in calcium transport to a phosphoenzyme giving rise to an increase in the Mg2+-dependent ATPase activity.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bunch W., Kallsen G., Berry J., Edwards C. The effect of denervation on incorporation of 32P and (3H)glycerol by the muscle membrane. J Neurochem. 1970 May;17(5):613–620. doi: 10.1111/j.1471-4159.1970.tb00541.x. [DOI] [PubMed] [Google Scholar]
- Fernandez J. L., Rosemblatt M., Hidalgo C. Highly purified sarcoplasmic reticulum vesicles are devoid of Ca2+-independent ('basal') ATPase activity. Biochim Biophys Acta. 1980 Jul;599(2):552–568. doi: 10.1016/0005-2736(80)90199-6. [DOI] [PubMed] [Google Scholar]
- Goldspink D. F. The effects of denervation on protein turnover of rat skeletal muscle. Biochem J. 1976 Apr 15;156(1):71–80. doi: 10.1042/bj1560071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green R. A., Heffron J. J., Mitchell G. Effects of potassium, procaine and dantrolene on the calcium-dependent and "basal" ATPase activities of sarcoplasmic reticulum of skeletal muscle. Gen Pharmacol. 1976 Oct;7(5):361–363. doi: 10.1016/0306-3623(76)90021-5. [DOI] [PubMed] [Google Scholar]
- Heffron J. J. Functional changes in sarcoplasmic reticulum and mitochondria of diseased muscle. Biochem Soc Trans. 1979 Aug;7(4):767–769. doi: 10.1042/bst0070767. [DOI] [PubMed] [Google Scholar]
- Inesi G., Cohen J. A., Coan C. R. Two functional states of sarcoplasmic reticulum ATPase. Biochemistry. 1976 Nov 30;15(24):5293–5298. doi: 10.1021/bi00669a015. [DOI] [PubMed] [Google Scholar]
- Kitazawa T. Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum. J Biochem. 1976 Nov;80(5):1129–1147. doi: 10.1093/oxfordjournals.jbchem.a131369. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
- McIntosh D. B., Berman M. C., Kench J. E. Characteristics of sarcoplasmic reticulum from slowly glycolysing and from rapidly glycolysing pig skeletal muscle post mortem. Biochem J. 1977 Sep 15;166(3):387–398. doi: 10.1042/bj1660387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mokri B., Engel A. G. Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology. 1975 Dec;25(12):1111–1120. doi: 10.1212/wnl.25.12.1111. [DOI] [PubMed] [Google Scholar]
- Pette D., Heilmann C. Some characteristics of sarcoplasmic reticulum in fast- and slow-twitch muscles. Biochem Soc Trans. 1979 Aug;7(4):765–767. doi: 10.1042/bst0070765. [DOI] [PubMed] [Google Scholar]
- Pleasure D., Wyszynski B., Sumner A., Schotland D., Feldman B., Nugent N., Hitz K., Goodman D. B. Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest. 1979 Nov;64(5):1157–1167. doi: 10.1172/JCI109569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreter F. A. Effect of denervation on fragmented sarcoplasmic reticulum of white and red muscle. Exp Neurol. 1970 Oct;29(1):52–64. doi: 10.1016/0014-4886(70)90036-1. [DOI] [PubMed] [Google Scholar]
- Stonnington H. H., Engel A. G. Normal and denervated muscle. A morphometric study of fine structure. Neurology. 1973 Jul;23(7):714–724. doi: 10.1212/wnl.23.7.714. [DOI] [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- Verjovski-Almeida S., Inesi G. Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle. Biochim Biophys Acta. 1979 Nov 16;558(1):119–125. doi: 10.1016/0005-2736(79)90321-3. [DOI] [PubMed] [Google Scholar]
- Wrogemann K., Pena S. D. Mitochondrial calcium overload: A general mechanism for cell-necrosis in muscle diseases. Lancet. 1976 Mar 27;1(7961):672–674. doi: 10.1016/s0140-6736(76)92781-1. [DOI] [PubMed] [Google Scholar]
- Zatti M., Patriarca P., Terribile V., Rossi F. Fatty acid unsaturation and cholesterol content in normal and denervated muscle. Experientia. 1969 Dec 15;25(12):1242–1243. doi: 10.1007/BF01897471. [DOI] [PubMed] [Google Scholar]
