Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Nov 15;200(2):203–210. doi: 10.1042/bj2000203

Interaction of antibody-bearing small unilamellar liposomes with target free antigen in vitro and in vivo. Some influencing factors

Gregory Gregoriadis 1, Anne Meehan 1, Mon Moey Mah 1
PMCID: PMC1163525  PMID: 6803776

Abstract

Affinity chromatography-purified and non-purified rabbit immunoglobulin G (IgG) raised against human immunoglobulin M (IgM) or kappa chain was incorporated into carboxyfluorescein-containing small unilamellar liposomes composed of egg phosphatidylcholine, cholesterol and phosphatidic acid (molar proportions 7:7:1). IgG incorporation was carried out by co-sonicating the immunoglobulin with the lipids (30% incorporated) (method A) or by interacting it with preformed liposomes bearing goat anti-(rabbit IgG) IgG (63 and 70% incorporated) (method B). (1) Judging from liposomal carboxyfluorescein-latency values, incorporation of IgG by either method did not affect liposomal stability. Furthermore, treatment of liposomes with papain released 75.1% (method A) and 93.3% and 95.1% (method B) of the IgG, suggesting that most of its antigen-recognizing Fab regions were available on the liposomal surface. This was strongly supported by the immunoelectrophoretic detection of Fab in papain-released products. (2) Liposomes bearing purified anti-IgM IgG bound 30%, (method A) and 45% (method B) of IgM in buffer. These values wee about 6-fold greater (both methods) than those obtained with corresponding liposomes bearing non-purified IgG. Binding of liposomes bearing anti-(kappa chain) IgG to kappa chain in buffer was 37% of that added. In the presence of mouse blood or serum, binding of IgM to liposomes bearing purified anti-IgM IgG was decreased slightly (24 and 30% for methods A and B). However, because of the nearly complete abolition of IgM binding to liposomes bearing non-purified IgG, these values were now 20–25-fold greater than those obtained with liposomes bearing non-purified IgG. (3) In mice pre-injected with IgM, at least 36.1% and 37.7% of the antigen was bound to subsequently injected liposomes bearing anti-IgM IgG incorporated by methods A and B respectively. No binding occurred with liposomes bearing the non-purified IgG. (4) Cholesterol-rich small unilamellar liposomes bearing affinity chromatography-purified antibodies may prove useful for the specific binding of free antigens in vivo.

Full text

PDF
203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M. A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochim Biophys Acta. 1981 Jan 22;640(2):385–397. doi: 10.1016/0005-2736(81)90464-8. [DOI] [PubMed] [Google Scholar]
  2. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  3. Black C. D., Gregoriadis G. Interaction of liposomes with blood plasma proteins. Biochem Soc Trans. 1976;4(2):253–256. doi: 10.1042/bst0040253a. [DOI] [PubMed] [Google Scholar]
  4. Campbell P. I., Harding N. G., Ryman B. E., Tyrrell D. A. Redistribution and altered excretion of digoxin in rats receiving digoxin antibodies incorporated in liposomes. Eur J Biochem. 1980 Aug;109(1):87–92. doi: 10.1111/j.1432-1033.1980.tb04770.x. [DOI] [PubMed] [Google Scholar]
  5. Chobanian J. V., Tall A. R., Brecher P. I. Interaction between unilamellar egg yolk lecithin vesicles and human high density lipoprotein. Biochemistry. 1979 Jan 9;18(1):180–187. doi: 10.1021/bi00568a027. [DOI] [PubMed] [Google Scholar]
  6. Finkelstein M. C., Weissmann G. Enzyme replacement via liposomes. Variations in lipid compositions determine liposomal integrity in biological fluids. Biochim Biophys Acta. 1979 Oct 4;587(2):202–216. doi: 10.1016/0304-4165(79)90354-4. [DOI] [PubMed] [Google Scholar]
  7. Ghosh P., Bachhawat B. K. Grafting of different glycosides on the surface of liposomes and its effect on the tissue distribution of 125I-labelled gamma-globulin encapsulated in liposomes. Biochim Biophys Acta. 1980 Nov 3;632(4):562–572. doi: 10.1016/0304-4165(80)90333-5. [DOI] [PubMed] [Google Scholar]
  8. Gregoriadis G., Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1287–1293. doi: 10.1016/0006-291x(79)92148-x. [DOI] [PubMed] [Google Scholar]
  9. Gregoriadis G., Meehan A. Interaction of antibody-bearing small unilamellar liposomes with antigen-coated cells. The effect of antibody and antigen concentration on the liposomal and cell surface respectively. Biochem J. 1981 Nov 15;200(2):211–216. doi: 10.1042/bj2000211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gregoriadis G., Neerunjun D. E. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem. 1974 Aug 15;47(1):179–185. doi: 10.1111/j.1432-1033.1974.tb03681.x. [DOI] [PubMed] [Google Scholar]
  11. Gregoriadis G., Neerunjun D. E., Hunt R. Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues. Life Sci. 1977 Aug 1;21(3):357–369. doi: 10.1016/0024-3205(77)90516-1. [DOI] [PubMed] [Google Scholar]
  12. Gregoriadis G., Neerunjun E. D. Homing of liposomes to target cells. Biochem Biophys Res Commun. 1975 Jul 22;65(2):537–544. doi: 10.1016/s0006-291x(75)80180-x. [DOI] [PubMed] [Google Scholar]
  13. Gregoriadis G., Ryman B. E. Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J. 1972 Aug;129(1):123–133. doi: 10.1042/bj1290123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gregoriadis G., Senior J. The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett. 1980 Sep 22;119(1):43–46. doi: 10.1016/0014-5793(80)80994-x. [DOI] [PubMed] [Google Scholar]
  15. Heath T. D., Fraley R. T., Papahdjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science. 1980 Oct 31;210(4469):539–541. doi: 10.1126/science.7423203. [DOI] [PubMed] [Google Scholar]
  16. Huang A., Huang L., Kennel S. J. Monoclonal antibody covalently coupled with fatty acid. A reagent for in vitro liposome targeting. J Biol Chem. 1980 Sep 10;255(17):8015–8018. [PubMed] [Google Scholar]
  17. Huang L., Kennel S. J. Binding of immunoglobulin G to phospholipid vesicles by sonication. Biochemistry. 1979 May 1;18(9):1702–1707. doi: 10.1021/bi00576a011. [DOI] [PubMed] [Google Scholar]
  18. Hwang K. J., Luk K. F., Beaumier P. L. Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4030–4034. doi: 10.1073/pnas.77.7.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Juliano R. L., Stamp D. Lectin-mediated attachment of glycoprotein-bearing liposomes to cells. Nature. 1976 May 20;261(5557):235–238. doi: 10.1038/261235a0. [DOI] [PubMed] [Google Scholar]
  20. Kirby C., Clarke J., Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett. 1980 Mar 10;111(2):324–328. doi: 10.1016/0014-5793(80)80819-2. [DOI] [PubMed] [Google Scholar]
  21. Kirby C., Clarke J., Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980 Feb 15;186(2):591–598. doi: 10.1042/bj1860591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirby C., Gregoriadis G. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vitro. Life Sci. 1980 Dec 8;27(23):2223–2230. doi: 10.1016/0024-3205(80)90388-4. [DOI] [PubMed] [Google Scholar]
  23. Klinman N. R., Taylor R. B. General methods for the study of cells and serum during the immune response: the response to dinitrophenyl in mice. Clin Exp Immunol. 1969 Apr;4(4):473–487. [PMC free article] [PubMed] [Google Scholar]
  24. Krupp L., Chobanian A. V., Brecher P. I. The in vivo transformation of phospholipid vesicles to a particle resembling HDL in the rat. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1251–1258. doi: 10.1016/s0006-291x(76)80149-0. [DOI] [PubMed] [Google Scholar]
  25. Leserman L. D., Barbet J., Kourilsky F., Weinstein J. N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature. 1980 Dec 11;288(5791):602–604. doi: 10.1038/288602a0. [DOI] [PubMed] [Google Scholar]
  26. Leserman L. D., Weinstein J. N., Blumenthal R., Terry W. D. Receptor-mediated endocytosis of antibody-opsonized liposomes by tumor cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4089–4093. doi: 10.1073/pnas.77.7.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Magee W. E., Cronenberger J. H., Thor D. E. Marked stimulation of lymphocyte-mediated attack on tumor cells by target-directed liposomes containing immune RNA. Cancer Res. 1978 Apr;38(4):1173–1176. [PubMed] [Google Scholar]
  28. Platts-Mills T. A., Ishizaka K. IgG diphtheria antitoxin responses from human tonsil lymphocytes induced by anti-gamma-chain antibodies. J Immunol. 1975 May;114(5):1605–1610. [PubMed] [Google Scholar]
  29. SCHEIDEGGER J. J. Une micro-méthode de l'immuno-electrophorèse. Int Arch Allergy Appl Immunol. 1955;7(2):103–110. [PubMed] [Google Scholar]
  30. Scherphof G., Roerdink F., Waite M., Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978 Aug 17;542(2):296–307. doi: 10.1016/0304-4165(78)90025-9. [DOI] [PubMed] [Google Scholar]
  31. Torchilin V. P., Omel'yanenko V. G., Klibanov A. L., Mikhailov A. I., Gol'danskii V. I., Smirnov V. N. Incorporation of hydrophilic protein modified with hydrophobic agent into liposome membrane. Biochim Biophys Acta. 1980 Nov 18;602(3):511–521. doi: 10.1016/0005-2736(80)90330-2. [DOI] [PubMed] [Google Scholar]
  32. Tyrrell D. A., Richardson V. J., Ryman B. E. The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochim Biophys Acta. 1977 Apr 27;497(2):469–480. doi: 10.1016/0304-4165(77)90204-5. [DOI] [PubMed] [Google Scholar]
  33. Weinstein J. N., Yoshikami S., Henkart P., Blumenthal R., Hagins W. A. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science. 1977 Feb 4;195(4277):489–492. doi: 10.1126/science.835007. [DOI] [PubMed] [Google Scholar]
  34. Weissmann G., Bloomgarden D., Kaplan R., Cohen C., Hoffstein S., Collins T., Gotlieb A., Nagle D. A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):88–92. doi: 10.1073/pnas.72.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES