Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Dec 15;200(3):573–581. doi: 10.1042/bj2000573

Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.

S Ahmed, I R Booth
PMCID: PMC1163579  PMID: 6282253

Abstract

The magnitude of delta psi (membrane potential), delta pH (pH gradient), lactose accumulation and cytoplasmic volume have been determined over a range of experimental conditions. A study of two probes of delta pH, benzoate and dimethyloxazolidene-2,4-dione (DMO), and four probes of delta psi, Rb+, K+, tetraphenylphosphonium (TPP+) and 3,3'-dipropylthiodicarbocyanine iodide, has been carried out. Benzoate and DMO are shown to be equivalent at pH values above the pK of DMO, but the latter may be less accurate below this pH. The cations TPP+ and Rb+ were found, by a number of criteria, to be equivalent, and TPP+ may be used in cells not pretreated with EDTA. These studies are an essential prerequisite to the use of TPP+ as a quantitative probe in untreated cells.

Full text

PDF
573

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addanki A., Cahill F. D., Sotos J. F. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++. J Biol Chem. 1968 May 10;243(9):2337–2348. [PubMed] [Google Scholar]
  2. Booth I. R., Hamilton W. A. Quantitative analysis of proton-linked transport system. beta-Galactoside exit in Escherichia coli. Biochem J. 1980 May 15;188(2):467–473. doi: 10.1042/bj1880467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booth I. R., Mitchell W. J., Hamilton W. A. Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli. Biochem J. 1979 Sep 15;182(3):687–696. doi: 10.1042/bj1820687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Booth I. R. Quantitative analysis of lactose transport in Escherichia coli. Biochem Soc Trans. 1980 Jun;8(3):276–278. doi: 10.1042/bst0080276. [DOI] [PubMed] [Google Scholar]
  5. Eklund T. Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J Appl Bacteriol. 1980 Jun;48(3):423–432. doi: 10.1111/j.1365-2672.1980.tb01031.x. [DOI] [PubMed] [Google Scholar]
  6. Epstein W., Whitelaw V., Hesse J. A K+ transport ATPase in Escherichia coli. J Biol Chem. 1978 Oct 10;253(19):6666–6668. [PubMed] [Google Scholar]
  7. Ghazi A., Schechter E., Letellier L., Labedan B. Probes of membrane potential in Escherichia coli cells. FEBS Lett. 1981 Mar 23;125(2):197–200. doi: 10.1016/0014-5793(81)80717-x. [DOI] [PubMed] [Google Scholar]
  8. Kashket E. R. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells. J Bacteriol. 1981 Apr;146(1):377–384. doi: 10.1128/jb.146.1.377-384.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kell D. B. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta. 1979 Jul 3;549(1):55–99. doi: 10.1016/0304-4173(79)90018-1. [DOI] [PubMed] [Google Scholar]
  10. Kroll R. G., Booth I. R. The role of potassium transport in the generation of a pH gradient in Escherichia coli. Biochem J. 1981 Sep 15;198(3):691–698. doi: 10.1042/bj1980691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Letellier L., Shechter E. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles. Eur J Biochem. 1979 Dec 17;102(2):441–447. doi: 10.1111/j.1432-1033.1979.tb04259.x. [DOI] [PubMed] [Google Scholar]
  12. Padan E., Zilberstein D., Rottenberg H. The proton electrochemical gradient in Escherichia coli cells. Eur J Biochem. 1976 Apr 1;63(2):533–541. doi: 10.1111/j.1432-1033.1976.tb10257.x. [DOI] [PubMed] [Google Scholar]
  13. Ramos S., Kaback H. R. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry. 1977 Mar 8;16(5):854–859. doi: 10.1021/bi00624a007. [DOI] [PubMed] [Google Scholar]
  14. Rhoads D. B., Woo A., Epstein W. Discrimination between Rb+ and K+ by Escherichia coli. Biochim Biophys Acta. 1977 Aug 15;469(1):45–51. doi: 10.1016/0005-2736(77)90324-8. [DOI] [PubMed] [Google Scholar]
  15. WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zilberstein D., Schuldiner S., Padan E. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry. 1979 Feb 20;18(4):669–673. doi: 10.1021/bi00571a018. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES