Abstract
The effects of the Ca2+-activated cysteine proteinase, the rat trypsin-like serine proteinase and bovine trypsin on myofibrillar proteins from rabbit skeletal muscle are compared. 2. Myofibrils that had been treated at neutral pH with the Ca2+-dependent proteinase and with the rat enzyme were (a) analyzed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and (b) examined in the electron microscope. Treatment with each proteinase resulted in the loss of the Z-discs, but the rat enzyme caused much more extensive disruption of the ultrastructure and degraded more of the myofibrillar proteins. 3. Purified F-actin was almost totally resistant to the proteinases, whereas G-actin was degraded by the rat trypsin-like proteinase at a rate approx. 15 times faster than was obtained with bovine trypsin. 4. Similar results were obtained with alpha-actinin, whereas tropomyosin was degraded more readily by bovine trypsin than by the rat trypsin-like proteinase. 5. The implications of these findings for the non-lysosomal breakdown of myofibrillar proteins in vivo are considered.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa N., Robson R. M., Goll D. E. An improved method for the preparation of alpha-actinin from rabbit striated muscle. Biochim Biophys Acta. 1970 Feb 17;200(2):284–295. doi: 10.1016/0005-2795(70)90172-8. [DOI] [PubMed] [Google Scholar]
- Beynon R. J., Kay J. The inactivation of native enzymes by a neutral proteinase from rat intestinal muscle. Biochem J. 1978 Jul 1;173(1):291–298. doi: 10.1042/bj1730291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carney I. T., Beynon R. J., Kay J., Birket N. The susceptibility of muscle phosphorylases a and b to digestion by a neutral proteinase from rat intestinal muscle. Comparison with the effects produced by pancreatic trypsin and chymotrypsin. Biochem J. 1978 Oct 1;175(1):105–113. doi: 10.1042/bj1750105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carney I. T., Curtis C. G., Kay J. K., Birket N. A low-molecular-weight inhibitor of the neutral proteinase from rat intestinal smooth muscle. Biochem J. 1980 Feb 1;185(2):423–433. doi: 10.1042/bj1850423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dayton W. R., Goll D. E., Zeece M. G., Robson R. M., Reville W. J. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 1976 May 18;15(10):2150–2158. doi: 10.1021/bi00655a019. [DOI] [PubMed] [Google Scholar]
- Dayton W. R., Reville W. J., Goll D. E., Stromer M. H. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry. 1976 May 18;15(10):2159–2167. doi: 10.1021/bi00655a020. [DOI] [PubMed] [Google Scholar]
- Dayton W. R., Schollmeyer J. V., Chan A. C., Allen C. E. Elevated levels of a calcium-activated muscle protease in rapidly atrophying muscles from vitamin E-deficient rabbits. Biochim Biophys Acta. 1979 May 1;584(2):216–230. doi: 10.1016/0304-4165(79)90266-6. [DOI] [PubMed] [Google Scholar]
- Dayton W. R., Schollmeyer J. V., Lepley R. A., Cortés L. R. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Biochim Biophys Acta. 1981 May 14;659(1):48–61. doi: 10.1016/0005-2744(81)90270-9. [DOI] [PubMed] [Google Scholar]
- Dean R. T. Macrophage protein turnover. Evidence for lysosomal participation in basal proteolysis. Biochem J. 1979 May 15;180(2):339–345. doi: 10.1042/bj1800339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- GUROFF G. A NEUTRAL, CALCIUM-ACTIVATED PROTEINASE FROM THE SOLUBLE FRACTION OF RAT BRAIN. J Biol Chem. 1964 Jan;239:149–155. [PubMed] [Google Scholar]
- Goll D. E., Robson R. M., Temple J., Stromer M. H. An effect of trypsin on the actin-myosin interaction. Biochim Biophys Acta. 1971 Mar 2;226(2):433–452. doi: 10.1016/0005-2728(71)90110-1. [DOI] [PubMed] [Google Scholar]
- Greaser M. L., Gergely J. Purification and properties of the components from troponin. J Biol Chem. 1973 Mar 25;248(6):2125–2133. [PubMed] [Google Scholar]
- Grinde B., Seglen P. O. Differential effects of proteinase inhibitors and amines on the lysosomal and non-lysosomal pathways of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Sep 17;632(1):73–86. doi: 10.1016/0304-4165(80)90250-0. [DOI] [PubMed] [Google Scholar]
- Jöbsis F. F., O'Connor M. J. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem Biophys Res Commun. 1966 Oct 20;25(2):246–252. doi: 10.1016/0006-291x(66)90588-2. [DOI] [PubMed] [Google Scholar]
- Kar N. C., Pearson C. M. A calcium-activated neutral protease in normal and dystrophic human muscle. Clin Chim Acta. 1976 Dec 1;73(2):293–297. doi: 10.1016/0009-8981(76)90175-3. [DOI] [PubMed] [Google Scholar]
- Kar N. C., Pearson C. M. Elevated activity of a neutral proteinase in human muscular dystrophy. Biochem Med. 1980 Dec;24(3):238–243. doi: 10.1016/0006-2944(80)90018-6. [DOI] [PubMed] [Google Scholar]
- Kay J., Carney I. T., Beynon R. J. The susceptibility of glycogen phosphorylase to inactivation by endogenous and exogenous proteases. Acta Biol Med Ger. 1977;36(11-12):1637–1644. [PubMed] [Google Scholar]
- Kay J. Intracellular protein degradation. Biochem Soc Trans. 1978;6(4):789–797. doi: 10.1042/bst0060789. [DOI] [PubMed] [Google Scholar]
- Kay J., Siemankowski R. F., Siemankowski L. M., Goll D. E. Degradation of smooth-muscle myosin by trypsin-like serine proteinases. Biochem J. 1982 Feb 1;201(2):267–278. doi: 10.1042/bj2010267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles S. E., Ballard F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J. 1976 Jun 15;156(3):609–617. doi: 10.1042/bj1560609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubota S., Suzuki K., Imahori K. A new method for the preparation of a calcium activated neutral protease highly sensitive to calcium ions. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1189–1194. doi: 10.1016/0006-291x(81)91949-5. [DOI] [PubMed] [Google Scholar]
- Marban E., Rink T. J., Tsien R. W., Tsien R. Y. Free calcium in heart muscle at rest and during contraction measured with Ca2+ -sensitive microelectrodes. Nature. 1980 Aug 28;286(5776):845–850. doi: 10.1038/286845a0. [DOI] [PubMed] [Google Scholar]
- Mellgren R. L. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett. 1980 Jan 1;109(1):129–133. doi: 10.1016/0014-5793(80)81326-3. [DOI] [PubMed] [Google Scholar]
- Poole B., Ohkuma S., Warburton M. J. The accumulation of weakly basic substances in lysosomes and the inhibition of intracellular protein degradation. Acta Biol Med Ger. 1977;36(11-12):1777–1788. [PubMed] [Google Scholar]
- Puca G. A., Nola E., Sica V., Bresciani F. Estrogen binding proteins of calf uterus. Molecular and functional characterization of the receptor transforming factor: A Ca2+-activated protease. J Biol Chem. 1977 Feb 25;252(4):1358–1366. [PubMed] [Google Scholar]
- Riebow J. F., Young R. B. Effect of leupeptin on protein turnover in normal and dystrophic chicken skeletal muscle cells in culture. Biochem Med. 1980 Jun;23(3):316–323. doi: 10.1016/0006-2944(80)90042-3. [DOI] [PubMed] [Google Scholar]
- Shaw E., Dean R. T. The inhibition of macrophage protein turnover by a selective inhibitor of thiol proteinases. Biochem J. 1980 Feb 15;186(2):385–390. doi: 10.1042/bj1860385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siemankowski R. F., Dreizen P. Canine cardiac myosin with special referrence to pressure overload cardiac hypertrophy. I. Subunit composition. J Biol Chem. 1978 Dec 10;253(23):8648–8658. [PubMed] [Google Scholar]
- Vedeckis W. V., Freeman M. R., Schrader W. T., O'Malley B. W. Progesterone-binding components of chick oviduct: partial purification and characterization of a calcium-activated protease which hydrolyzes the progesterone receptor. Biochemistry. 1980 Jan 22;19(2):335–343. doi: 10.1021/bi00543a014. [DOI] [PubMed] [Google Scholar]
- Wildenthal K., Wakeland J. R., Ord J. M., Stull J. T. Interference with lysosomal proteolysis fails to reduce cardiac myosin degradation. Biochem Biophys Res Commun. 1980 Sep 30;96(2):793–798. doi: 10.1016/0006-291x(80)91424-2. [DOI] [PubMed] [Google Scholar]






