Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Mar 1;201(3):495–499. doi: 10.1042/bj2010495

Separation of intermediates in the refolding of reduced erabutoxin b by analytical isoelectric focusing in layers of polyacrylamide gel

Françoise Bouet *, André Ménez *,, Robert C Hider , Pierre Fromageot *
PMCID: PMC1163674  PMID: 7092808

Abstract

Isoelectric focusing in a thin layer of polyacrylamide gel is shown to be a suitable method for the resolution of intermediates trapped during the refolding process of reduced cystine-containing proteins. The method has been applied to the well-characterized snake neurotoxin erabutoxin b. An explanation is offered for the relatively low rate of refolding of this polypeptide.

Full text

PDF
495

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Creighton T. E. Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol. 1978;33(3):231–297. doi: 10.1016/0079-6107(79)90030-0. [DOI] [PubMed] [Google Scholar]
  2. Creighton T. E. Interactions between cysteine residues as probes of protein conformation: the disulphide bond between Cys-14 and Cys-38 of the pancreatic trypsin inhibitor. J Mol Biol. 1975 Aug 25;96(4):767–776. doi: 10.1016/0022-2836(75)90151-5. [DOI] [PubMed] [Google Scholar]
  3. Creighton T. E. Intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol. 1974 Aug 15;87(3):579–602. doi: 10.1016/0022-2836(74)90105-3. [DOI] [PubMed] [Google Scholar]
  4. Creighton T. E. Kinetics of refolding of reduced ribonuclease. J Mol Biol. 1977 Jun 25;113(2):329–341. doi: 10.1016/0022-2836(77)90145-0. [DOI] [PubMed] [Google Scholar]
  5. Dufton M. J., Hider R. C. Snake toxin secondary structure predictions. Structure activity relationships. J Mol Biol. 1977 Sep 15;115(2):177–193. doi: 10.1016/0022-2836(77)90095-x. [DOI] [PubMed] [Google Scholar]
  6. Endo Y., Sato S., Ishii S., Tamiya N. The disulphide bonds of erabutoxin a, a neurotoxic protein of a sea-snake (Laticauda semifasciata) venom. Biochem J. 1971 May;122(4):463–467. doi: 10.1042/bj1220463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ishikawa Y., Menez A., Hori H., Yoshida H., Tamiya N. Structure of snake toxins and their affinity to the acetylcholine receptor of fish electric organ. Toxicon. 1977;15(6):477–488. doi: 10.1016/0041-0101(77)90098-8. [DOI] [PubMed] [Google Scholar]
  8. Menez A., Langlet G., Tamiya N., Fromageot P. Conformation of snake toxic polypeptides studied by a method of prediction and circular dichroism. Biochimie. 1978 Sep 4;60(5):505–516. doi: 10.1016/s0300-9084(78)80866-9. [DOI] [PubMed] [Google Scholar]
  9. Menez A., Morgat J. -L., Fromageot P., Ronseray A. -M., Boquet P., Changeux J. -P. Tritium labelling of the alpha-neurotoxin of Naja nigricollis. FEBS Lett. 1971 Oct 1;17(2):333–335. doi: 10.1016/0014-5793(71)80180-1. [DOI] [PubMed] [Google Scholar]
  10. Ménez A., Bouet F., Guschlbauer W., Fromageot P. Refolding of reduced short neurotoxins: circular dichroism analysis. Biochemistry. 1980 Sep 2;19(18):4166–4172. doi: 10.1021/bi00559a005. [DOI] [PubMed] [Google Scholar]
  11. Sato S., Tamiya N. The amino acid sequences of erabutoxins, neurotoxic proteins of sea-snake (Laticauda semifasciata) venom. Biochem J. 1971 May;122(4):453–461. doi: 10.1042/bj1220453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yang C. C., Yang H. J., Chiu R. H. The position of disulfide bonds in cobrotoxin. Biochim Biophys Acta. 1970 Aug 21;214(2):355–363. doi: 10.1016/0005-2795(70)90013-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES