Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Mar 1;201(3):515–521. doi: 10.1042/bj2010515

The characterization and interconversion of three forms of cholesterol oxidase extracted from Nocardia rhodochrous.

P S Cheetham, P Dunnill, M D Lilly
PMCID: PMC1163677  PMID: 6953966

Abstract

The physical properties and the methods used for interconversion of three forms of cholesterol oxidase extracted from Nocardia rhodochrous by treatment with Triton X-100, trypsin or buffer alone provide evidence that these forms differ chiefly in the possession or absence of a hydrophobic anchor region connected by a trypsin-sensitive region. The hydrophobic domain normally integrates the enzyme into the cell membrane and confers amphipathic properties on the solubilized enzyme, causing adsorption to hydrophobic resins, aggregation when detergent is removed and formation of mixed micelles with detergent and cholesterol resulting in surface-dilution kinetic behaviour and activation by relatively high concentrations of water-miscible solvents. By contrast, only the enzymic fragment is extracted with trypsin and it behaves as a conventional soluble enzyme and does not aggregate or interact with hydrophobic resins, detergents or water-miscible solvents. As no phospholipid could be detected in the enzyme extracts, the detergent appears to act as a substitute for the cell-membrane lipids that would normally interact with the hydrophobic region. This cholesterol oxidase is an example of a prokaryotic enzyme possessing two closely associated catalytic functions, dehydrogenase and isomerase activities, and an anchoring function.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. Bernath F. R., Vieth W. R. Lysozyme activity in the presence of nonionic detergent micelles. Biotechnol Bioeng. 1972 Sep;14(5):737–752. doi: 10.1002/bit.260140505. [DOI] [PubMed] [Google Scholar]
  3. Booth A. G., Hubbard L. M., Kenny A. J. Proteins of the kidney microvillar membrane. Immunoelectrophoretic analysis of the membrane hydrolases: identification and resolution of the detergent- and proteinase-solubilized forms. Biochem J. 1979 May 1;179(2):397–405. doi: 10.1042/bj1790397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunner J., Hauser H., Braun H., Wilson K. J., Wacker H., O'Neill B., Semenza G. The mode of association of the enzyme complex sucrase.isomaltase with the intestinal brush border membrane. J Biol Chem. 1979 Mar 25;254(6):1821–1828. [PubMed] [Google Scholar]
  5. Brunner J., Hauser H., Semenza G. Single bilayer lipid-protein vesicles formed from phosphatidylcholine and small intestinal sucrase.isomaltase. J Biol Chem. 1978 Oct 25;253(20):7538–7546. [PubMed] [Google Scholar]
  6. Cheetham P. S. Removal of triton X-100 from aqueous solution using amberlite XAD-2. Anal Biochem. 1979 Jan 15;92(2):447–452. doi: 10.1016/0003-2697(79)90683-3. [DOI] [PubMed] [Google Scholar]
  7. Coston M. B., Loomis W. F., Jr Isozymes of beta-glucosidase in Dictyostelium discoideum. J Bacteriol. 1969 Dec;100(3):1208–1217. doi: 10.1128/jb.100.3.1208-1217.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dennis E. A. Phospholipase A2 activity towards phosphatidylcholine in mixed micelles: surface dilution kinetics and the effect of thermotropic phase transitions. Arch Biochem Biophys. 1973 Oct;158(2):485–493. doi: 10.1016/0003-9861(73)90540-7. [DOI] [PubMed] [Google Scholar]
  9. Faucon J. F., Dufourcq J., Lussan C., Bernon R. Lipid-protein interactions in membrane models. Fluorescence polarization study of cytochrome b5-phospholipids complexes. Biochim Biophys Acta. 1976 Jun 17;436(2):283–294. doi: 10.1016/0005-2736(76)90193-0. [DOI] [PubMed] [Google Scholar]
  10. Frank G., Brunner J., Hauser H., Wacker H., Semenza G., Zuber H. The hydrophobic anchor of small-intestinal sucrase--isomaltase: N-terminal sequence of isomaltase subunit. FEBS Lett. 1978 Dec 1;96(1):183–188. doi: 10.1016/0014-5793(78)81090-4. [DOI] [PubMed] [Google Scholar]
  11. Garewal H. S. A procedure for the estimation of microgram quantities of triton X-100. Anal Biochem. 1973 Aug;54(2):319–324. doi: 10.1016/0003-2697(73)90359-x. [DOI] [PubMed] [Google Scholar]
  12. Hechtman P., Kachra Z. Interaction of activating protein and surfactants with human liver hexosaminidase A and GM2 ganglioside. Biochem J. 1980 Mar 1;185(3):583–591. doi: 10.1042/bj1850583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ito A., Sato R. Purification by means of detergents and properties of cytochrome b5 from liver microsomes. J Biol Chem. 1968 Sep 25;243(18):4922–4923. [PubMed] [Google Scholar]
  14. Jost P. C., Capadil R. A., Vanderkooi G., Griffith O. H. Lipid-protein and lipid-lipid interactions in cytochrome oxidase model membranes. J Supramol Struct. 1973;1(4):269–280. doi: 10.1002/jss.400010404. [DOI] [PubMed] [Google Scholar]
  15. Kerényi G., Szentirmai A., Natonek M. Properties of delta5-3beta-hydroxysteroid oxidoreductase isolated from Streptomyces griseocarneus. Acta Microbiol Acad Sci Hung. 1975;22(4):487–496. [PubMed] [Google Scholar]
  16. Louvard D., Maroux S., Vannier C., Desnuelle P. Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100. Biochim Biophys Acta. 1975 Jan 28;375(2):235–248. [PubMed] [Google Scholar]
  17. Maroux S., Louvard D. On the hydrophobic part of aminopeptidase and maltases which bind the enzyme to the intestinal brush border membrane. Biochim Biophys Acta. 1976 Jan 21;419(2):189–195. doi: 10.1016/0005-2736(76)90345-x. [DOI] [PubMed] [Google Scholar]
  18. Owen M. J., Knott J. C., Crumpton M. J. Labeling of lymphocyte surface antigens by the lipophilic, photoactivatable reagent hexanoyldiiodo-N-(4-azido-2-nitrophenyl)tyramine. Biochemistry. 1980 Jun 24;19(13):3092–3099. doi: 10.1021/bi00554a040. [DOI] [PubMed] [Google Scholar]
  19. Richmond W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin Chem. 1973 Dec;19(12):1350–1356. [PubMed] [Google Scholar]
  20. Simons K., Sarvas M., Garoff H., Helenius A. Membrane-bound and secreted forms of penicillinase from Bacillus licheniformis. J Mol Biol. 1978 Dec 25;126(4):673–690. doi: 10.1016/0022-2836(78)90015-3. [DOI] [PubMed] [Google Scholar]
  21. Smith A. G., Brooks C. J. Application of cholesterol oxidase in the analysis of steroids. J Chromatogr. 1974 Dec 18;101(2):373–378. doi: 10.1016/s0021-9673(00)82854-x. [DOI] [PubMed] [Google Scholar]
  22. Spatz L., Strittmatter P. A form of reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment. J Biol Chem. 1973 Feb 10;248(3):793–799. [PubMed] [Google Scholar]
  23. Springer T. A., Strominger J. L. Detergent-soluble HLA antigens contain a hydrophilic region at the COOH-terminus and a penultimate hydrophobic region. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2481–2485. doi: 10.1073/pnas.73.7.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tomioka H., Kagawa M., Nakamura S. Some enzymatic properties of 3beta-hydroxysteroid oxidase produced by Streptomyces violascens. J Biochem. 1976 May;79(5):903–915. doi: 10.1093/oxfordjournals.jbchem.a131158. [DOI] [PubMed] [Google Scholar]
  25. Tomita M., Marchesi V. T. Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2964–2968. doi: 10.1073/pnas.72.8.2964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Warner T. G., Dennis E. A. Phosphatidylserine decarboxylase: analysis of its action towards unsaturated and saturated phosphatidylserine and the effect of Triton X-100 on activity. Arch Biochem Biophys. 1975 Apr;167(2):761–768. doi: 10.1016/0003-9861(75)90522-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES