Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Mar 1;201(3):597–603. doi: 10.1042/bj2010597

Hydrolysis of monomolecular layers of synthetic sphingomyelins by sphingomyelinase of Staphylococcus aureus.

S Yedgar, R Cohen, S Gatt, Y Barenholz
PMCID: PMC1163686  PMID: 6284123

Abstract

The enzymic hydrolysis of three synthetic sphingomyelins, spread as monomolecular films at the air/water interface by purified Staphylococcus aureus sphingomyelinase was studied. Each of the three sphinomyelins (DL-erythro-N-palmitoyl-, -N-stearoyl- and -N-lignoceryl-sphingosylphosphocholine) has an optimal activity-dependent surface pressure or concentration curve. The optimal surface pressure as well as the optimal surface density for hydrolysis was different for each of the three substrates. This optimum coincides with the liquid-condensed/liquid-expanded phase transition for each of the sphingomyelins. At initial surface pressures (pi 0) below the optimum, reaction rates are controlled mainly by surface density of the substrate; above the optimal pi 0, reaction rates decrease with increasing surface pressure. The difference between the three synthetic sphingomyelins are explained by the variation in the degree of asymmetry between their two paraffinic chains.

Full text

PDF
597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  4. Barenholz Y., Suurkuusk J., Mountcastle D., Thompson T. E., Biltonen R. L. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry. 1976 Jun 1;15(11):2441–2447. doi: 10.1021/bi00656a030. [DOI] [PubMed] [Google Scholar]
  5. Barenholz Y., Thompson T. E. Sphingomyelins in bilayers and biological membranes. Biochim Biophys Acta. 1980 Sep 30;604(2):129–158. doi: 10.1016/0005-2736(80)90572-6. [DOI] [PubMed] [Google Scholar]
  6. Calhoun W. I., Shipley G. G. Fatty acid composition and thermal behavior of natural sphingomyelins. Biochim Biophys Acta. 1979 Aug 23;555(3):436–441. doi: 10.1016/0005-2736(79)90397-3. [DOI] [PubMed] [Google Scholar]
  7. Cohen R., Barenholz Y. Correlation between the thermotropic behavior of sphingomyelin liposomes and sphingomyelin hydrolysis by sphingomyelinase of Staphylococcus aureus. Biochim Biophys Acta. 1978 May 4;509(1):181–187. doi: 10.1016/0005-2736(78)90018-4. [DOI] [PubMed] [Google Scholar]
  8. Colley C. M., Zwaal R. F., Roelofsen B., van Deenen L. L. Lytic and non-lytic degradation of phospholipids in mammalian erythrocytes by pure phospholipases. Biochim Biophys Acta. 1973 Apr 25;307(1):74–82. doi: 10.1016/0005-2736(73)90026-6. [DOI] [PubMed] [Google Scholar]
  9. Esposito S., Sémériva M., Desnuelle P. Effect of surface pressure on the hydrolysis of ester monolayers by pancreatic lipase. Biochim Biophys Acta. 1973 Apr 12;302(2):293–304. doi: 10.1016/0005-2744(73)90158-7. [DOI] [PubMed] [Google Scholar]
  10. Estep T. N., Calhoun W. I., Barenholz Y., Biltonen R. L., Shipley G. G., Thompson T. E. Evidence for metastability in stearoylsphingomyelin bilayers. Biochemistry. 1980 Jan 8;19(1):20–24. doi: 10.1021/bi00542a004. [DOI] [PubMed] [Google Scholar]
  11. Gatt S., Barenholz Y. Enzymes of complex lipid metabolism. Annu Rev Biochem. 1973;42(0):61–90. doi: 10.1146/annurev.bi.42.070173.000425. [DOI] [PubMed] [Google Scholar]
  12. Hertz R., Barenholz Y. Permeability and integrity properties of lecithin-sphingomyelin liposomes. Chem Phys Lipids. 1975 Nov;15(2):138–156. doi: 10.1016/0009-3084(75)90037-7. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lee A. G. Functional properties of biological membranes: a physical-chemical approach. Prog Biophys Mol Biol. 1975;29(1):3–56. doi: 10.1016/0079-6107(76)90019-5. [DOI] [PubMed] [Google Scholar]
  15. Liu N. I., Kay R. L. Redetermination of the pressure dependence of the lipid bilayer phase transition. Biochemistry. 1977 Jul 26;16(15):3484–3486. doi: 10.1021/bi00634a030. [DOI] [PubMed] [Google Scholar]
  16. Miller I. R., Ruysschaert J. M. Enzymic activity and surface inactivation of phospholipase C at the water-air interface. J Colloid Interface Sci. 1971 Feb;35(2):340–345. doi: 10.1016/0021-9797(71)90128-7. [DOI] [PubMed] [Google Scholar]
  17. Moore N. F., Patzer E. J., Barenholz Y., Wagner R. R. Effect of phospholipase C and cholesterol oxidase on membrane integrity, microviscosity, and infectivity of vesicular stomatitis virus. Biochemistry. 1977 Oct 18;16(21):4708–4715. doi: 10.1021/bi00640a027. [DOI] [PubMed] [Google Scholar]
  18. Nagle J. F. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J Membr Biol. 1976;27(3):233–250. doi: 10.1007/BF01869138. [DOI] [PubMed] [Google Scholar]
  19. Quinn P. J., Barenholz Y. A comparison of the activity of phosphatidylinositol phosphodiesterase against substrate in dispersions and as monolayers at the air-water interface. Biochem J. 1975 Jul;149(1):199–208. doi: 10.1042/bj1490199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shah D. O., Schulman J. H. Interaction of calcium ions with lecithin and sphingomyelin monolayers. Lipids. 1967 Jan;2(1):21–27. doi: 10.1007/BF02531995. [DOI] [PubMed] [Google Scholar]
  21. Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
  22. Small D. M. Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions. Fed Proc. 1970 Jul-Aug;29(4):1320–1326. [PubMed] [Google Scholar]
  23. Stoffel W. Chemical synthesis of choline-labeled lecithins and sphingomyelins. Methods Enzymol. 1975;35:533–541. doi: 10.1016/0076-6879(75)35181-1. [DOI] [PubMed] [Google Scholar]
  24. Verger R. Interfacial enzyme kinetics of lipolysis. Annu Rev Biophys Bioeng. 1976;5:77–117. doi: 10.1146/annurev.bb.05.060176.000453. [DOI] [PubMed] [Google Scholar]
  25. Verger R., Mieras M. C., de Haas G. H. Action of phospholipase A at interfaces. J Biol Chem. 1973 Jun 10;248(11):4023–4034. [PubMed] [Google Scholar]
  26. Yedgar S., Gatt S. Effect of Triton X-100 on the hydrolysis of sphingomyelin by sphingomyelinase of rat brain. Biochemistry. 1976 Jun 15;15(12):2570–2573. doi: 10.1021/bi00657a013. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES