Abstract
Tetranitromethane reacts with essentially all 21 tyrosine residues of iron-free ovotransferrin. In iron-ovotransferrin, 7 mol of tyrosine/mol of protein are unreactive. Peptides containing the unreactive tyrosine residues were isolated from digests of nitrated iron-ovotransferrin. By comparing the structures of the peptides with the amino acid sequence of ovotransferrin it is found that there are ten protected residues occupying positions 42, 82, 92, 188, 319, 415, 431, 521 and 524 in the polypeptide chain. The problem of identifying the tyrosine residues that form bonds with the metal atoms is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AASA R., MALMSTROEM B. G., SALTMAN P. THE SPECIFIC BINDING OF IRON(III) AND COPPER(II) TO TRANSFERRIN AND CONALBUMIN. Biochim Biophys Acta. 1963 Sep 24;75:203–222. doi: 10.1016/0006-3002(63)90599-7. [DOI] [PubMed] [Google Scholar]
- AMBLER R. P. THE AMINO ACID SEQUENCE OF PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:349–378. doi: 10.1042/bj0890349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
- Azari P., Phillips J. L. Action of periodate on ovotransferrin and s metal complexes. Arch Biochem Biophys. 1970 May;138(1):32–38. doi: 10.1016/0003-9861(70)90280-8. [DOI] [PubMed] [Google Scholar]
- Bezkorovainy A., Grohlich D. Cleavage of transferrin by cyanogen bromide. Biochim Biophys Acta. 1972 May 18;263(3):645–650. doi: 10.1016/0005-2795(72)90045-1. [DOI] [PubMed] [Google Scholar]
- CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
- Carey P. R., Young N. M. The resonance Raman spectrum of the metalloprotein ovotransferrin. Can J Biochem. 1974 Apr;52(4):273–280. doi: 10.1139/o74-043. [DOI] [PubMed] [Google Scholar]
- Elleman T. C., Williams J. The amino acid sequences of cysteic acid-containing peptides from performic acid-oxidized ovotransferrin. Biochem J. 1970 Feb;116(3):515–532. doi: 10.1042/bj1160515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRAY W. R., HARTLEY B. S. THE STRUCTURE OF A CHYMOTRYPTIC PEPTIDE FROM PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:379–380. doi: 10.1042/bj0890379. [DOI] [PubMed] [Google Scholar]
- Geoghegan K. F., Dallas J. L., Feeney R. E. Periodate inactivation of ovotransferrin and human serum transferrin. J Biol Chem. 1980 Dec 10;255(23):11429–11434. [PubMed] [Google Scholar]
- HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
- JEPSON J. B., SMITH I. Multiple dipping procedures in paper chromatography: a specific test for hydroxy-proline. Nature. 1953 Dec 12;172(4389):1100–1101. doi: 10.1038/1721100b0. [DOI] [PubMed] [Google Scholar]
- Komatsu S. K., Feeney R. E. Role of tyrosyl groups in metal binding properties of transferrins. Biochemistry. 1967 Apr;6(4):1136–1141. doi: 10.1021/bi00856a024. [DOI] [PubMed] [Google Scholar]
- Line W. F., Grohlich D., Bezkorovainy A. The effect of chemical modification on the iron binding properties of human transferrin. Biochemistry. 1967 Nov;6(11):3393–3402. doi: 10.1021/bi00863a009. [DOI] [PubMed] [Google Scholar]
- Mazurier J., Aubert J. P., Loucheux-Lefevre M. H. Comparative circular dichroism studies of iron-free and iron-saturated forms of human serotransferrin and lactortransferrin. FEBS Lett. 1976 Jul 15;66(2):238–242. doi: 10.1016/0014-5793(76)80512-1. [DOI] [PubMed] [Google Scholar]
- Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
- Phillips J. L., Azari P. Iodination of ovotransferrin and its iron complex. Extent of involvement of tyrosine phenolic groups in the iron binding. Arch Biochem Biophys. 1972 Aug;151(2):445–452. doi: 10.1016/0003-9861(72)90520-6. [DOI] [PubMed] [Google Scholar]
- Tan A. T., Woodworth R. C. Ultraviolet difference spectrl studies of conalbumin complexes with transition metal ions. Biochemistry. 1969 Sep;8(9):3711–3716. doi: 10.1021/bi00837a033. [DOI] [PubMed] [Google Scholar]
- Teuwissen B., Masson P. L., Osinski P., Heremans J. F. Metal-combining properties of human lactoferrin. The effect of nitration of lactoferrin with tetranitromethane. Eur J Biochem. 1973 Jun;35(2):366–371. doi: 10.1111/j.1432-1033.1973.tb02848.x. [DOI] [PubMed] [Google Scholar]
- Tomimatsu Y., Kint S., Scherer J. R. Resonance Raman spectra of iron(III)-, copper(II)-, cobalt(III)-, and manganese(III)-transferrins and of bis(2,4,6-trichlorophenolato)diimidazolecopper(II) monohydrate, a possible model for copper(II) binding to transferrins. Biochemistry. 1976 Nov 2;15(22):4918–4924. doi: 10.1021/bi00667a026. [DOI] [PubMed] [Google Scholar]
- Tsao D., Azari P., Phillips J. L. On the sturcture of ovotransferrin. 3. Nitration of iron--ovotransferrin and distribution of tyrosines involved in iron-binding activity. Biochemistry. 1974 Jan 29;13(3):408–413. doi: 10.1021/bi00700a003. [DOI] [PubMed] [Google Scholar]
- WARNER R. C., WEBER I. The preparation of crystalline conalbumin. J Biol Chem. 1951 Jul;191(1):173–180. [PubMed] [Google Scholar]
- WINDLE J. J., WIERSEMA A. K., CLARK J. R., FEENEY R. E. INVESTIGATION OF THE IRON AND COPPER COMPLEXES OF AVIAN CONALBUMINS AND HUMAN TRANSFERRINS BY ELECTRON PARAMAGNETIC RESONANCE. Biochemistry. 1963 Nov-Dec;2:1341–1345. doi: 10.1021/bi00906a028. [DOI] [PubMed] [Google Scholar]
- Woodworth R. C., Morallee K. G., Williams R. J. Perturbations of the proton magnetic resonance spectra of conalbumin and siderophilin as a result of binding Ga3+ or Fe3+. Biochemistry. 1970 Feb 17;9(4):839–842. doi: 10.1021/bi00806a017. [DOI] [PubMed] [Google Scholar]
